

Objective Questions

Characteristics and Measurable properties of gases

- **1.** Which one of the following statements is not correct about the three states of matter *i.e.* solid, liquid and gaseous
 - (a) Molecules of a solid possess least energy whereas those of a gas possess highest energy
 - (b) The density of solid is highest whereas that of gases is lowest
 - (c) Gases like liquids possess definite volumes
 - (d) Molecules of a solid possess vibratory motion
- **2.** The temperature and pressure at which ice, liquid water and water vapour can exist together are
 - (a) $0^{\circ} C, 1 atm$
- (b) $2^{\circ} C$, 4.7 atm
- (c) $0^{\circ} C$, 4.7 mm
- (d) $-2^{\circ}C$, 4.7 mm
- 3. Which of the following is true about gaseous state
 - (a) Thermal energy = Molecular attraction
 - (b) Thermal energy >> Molecular attraction
 - (c) Thermal energy << Molecular attraction
 - (d) Molecular forces >> Those in liquids
- 4. Kinetic energy of molecules is highest in
 - (a) Gases
- (b) Solids
- (c) Liquids
- (d) Solutions
- **5.** Which of the following statement is correct
 - (a) In all the three states the molecules possess random translational motion
 - (b) Gases cannot be converted into solids without passing through liquid state
 - (c) One of the common property of liquids and gases is viscosity
- (d) According to Boyle's law V/P is constant at constant T
- **6.** A volume of 1 m^3 is equal to
 - (a) 1000 cm^3
- (b) 100 cm^3
- (c) $10 dm^3$
- (d) $10^6 cm^3$
- **7.** Which one of the following is not a unit of pressure
 - (a) Newton
- (b) Torr
- (c) Pascal
- (d) Bar
- **8.** $1^{\circ}C$ rise in temperature is equal to a rise of
 - (a) $1^{o} F$

- (b) $9/5^{o}F$
- (c) $5/9^{o}F$
- (d) $33^{o}F$

- **9.** Which of the following relations for expressing volume of a sample is not correct
 - (a) $1L = 10^3 \, ml$
- (b) $1 dm^3 = 1 L$
- (c) $1L = 10^3 m^3$
- (d) $1L = 10^3 cm^3$
- **10.** One atmosphere is numerically equal to approximately
 - (a) $10^6 \, \text{dynes } cm^{-2}$
- (b) $10^2 \text{ dynes } cm^{-2}$
- (c) $10^4 \text{ dynes } cm^{-2}$
- (d) $10^8 \text{ dynes } cm^{-2}$
- **11.** 2gm of O_2 at $27^{\circ}C$ and 760mm of Hg pressure has volume [BCECE 2005]
 - (a) 1.5 lit.
- (b) 2.8 lit.
- (c) 11.2 lit.
- (d) 22.4 lit.
- 12. Pressure of a gas in a vessel can be measured by
 - (a) Barometer
- (b) Manometer
- (c) Stalgometer
- (d) All the baove
- 13. Volume occupied by a gas at one atmospheric pressure and $0^{o}\,C$ is $V\,mL$. Its volume at 273 K will be

[Bihar MADT 1982]

- (a) V ml
- (b) V/2 ml

(c) 2 V

- (d) None of these
- **14.** Which one of the following statements is wrong for gases

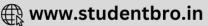
[CBSE PMT 1999]

- (a) Gases do not have a definite shape and volume
 - (b) Volume of the gas is equal to the volume of the container confining the gas
 - (c) Confined gas exerts uniform pressure on the walls of its container in all directions
 - (d) Mass of the gas cannot be determined by weighing a container in which it is enclosed
- 15. Which of the following exhibits the weakest intermolecular forces [AIIMS 2000]
 - (a) NH_3
- (b) HCl

(c) *He*

- (d) H_2O
- 16. N_2 is found in a litre flask under 100kPa pressure and O_2 is found in another 3 litre flask under $320\,kPa$ pressure. If the two flasks are connected, the resultant pressures is

[Kerala PMT 2004]

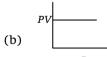

- (a) 310 *kPa*
- (b) 210 kPa
- (c) 420 kPa
- (d) 365 kPa
- (e) 265 kPa

Ideal gas equation and Related gas laws

1. If *P*, *V*, *T* represent pressure, volume and temperature of the gas, the correct representation of Boyle's law is

[BIT Ranchi 1988]

- (a) $V \propto \frac{1}{T}$ (at constant *P*)
- PV = RT
- (c) $V \propto 1/P$ (at constant T) (d)
- PV = nR
- **2.** At constant temperature, in a given mass of an ideal gas


[CBSE PMT 1991]

- (a) The ratio of pressure and volume always remains constant
- (b) Volume always remains constant
- (c) Pressure always remains constant
- (d) The product of pressure and volume always remains constant
- **3.** Air at sea level is dense. This is a practical application of

[Kerala CEE 2000]

- (a) Boyle's law
- (b) Charle's law
- (c) Avogadro's law
- (d) Dalton's law
- **4.** If $20 cm^3$ gas at 1 atm. is expanded to 50 cm^3 at constant T, then what is the final pressure[CPMT 1988]
 - (a) $20 \times \frac{1}{50}$
- (b) $50 \times \frac{1}{20}$
- (c) $1 \times \frac{1}{20} \times 50$
- (d) None of these
- 5. Which of the following statement is false[BHU 1994]
 - (a) The product of pressure and volume of fixed amount of a gas is independent of temperature
 - (b) Molecules of different gases have the same K.E. at a given temperature
 - (c) The gas equation is not valid at high pressure and low temperature
 - (d) The gas constant per molecule is known as Boltzmann constant
- **6.** Which of the following graphs represent Boyle's law

- 7. Densities of two gases are in the ratio 1 : 2 and their temperatures are in the ratio 2 : 1, then the ratio of their respective pressures is [BHU 2000]
 - (a) 1:1
- (b) 1:2
- (c) 2:1
- (d) 4:1
- **8.** At constant pressure, the volume of fixed mass of an ideal gas is directly proportional to [EAMCET 1985]
 - (a) Absolute temperature
- (b) Degree centigrade

- (c) Degree Fahrenheit (d)
 - (d) None
- Which of the following expression at constant pressure represents Charle's law [AFMC 1990]
 - (a) $V \propto \frac{1}{T}$
- (b) $V \propto \frac{1}{T^2}$
- (c) $V \propto T$
- (d) $V \propto d$
- **10.** Use of hot air balloons in sports and meteorological obsevations is an application of [Kerala ME
 - (a) Boyle's law
- (b) Newtonic law
- (c) Kelvin's law
- (d) Charle's law
- 11. A 10 g of a gas at atmospheric pressure is cooled from $273\,^oC$ to 0^oC keeping the volume constant, its pressure would become
 - (a) 1/2 atm
- (b) 1/273 atm
- (c) 2 atm
- (d) 273 atm
- Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction of its volume at

[CBSE PMT 1989]

- (a) $0^{o}C$
- (b) Its
- critical

- temperature
- (c) Absolute zero
- (d) Its
- Boyle

- temperature
- 13. A certain sample of gas has a volume of 0.2 *litre* measured at 1 *atm*. pressure and $0^{o}C$. At the same pressure but at $273^{o}C$, its volume will be[EAMCET 1992, 9
 - (a) 0.4 litres
- (b) 0.8 litres
- (c) 27.8 litres
- (d) 55.6 litres
- **14.** 400 cm^3 of oxygen at $27^{\circ}C$ were cooled to $-3^{\circ}C$ without change in pressure. The contraction in volume will be
 - (a) 40 cm^3
- (b) 30 cm^3
- (c) 44.4 cm^3
- (d) 360 cm^3
- **15.** The pressure p of a gas is plotted against its absolute temperature T for two different constant volumes, V_1 and V_2 . When $V_1 > V_2$, the
 - (a) Curves have the same slope and do not intersect
 - (b) Curves must intersect at some point other than T=0
 - (c) Curve for V_2 has a greater slope than that for V_1
 - (d) Curve for V_1 has a greater slope than that for V_2
- **16.** Two closed vessels of equal volume containing air at pressure P_1 and temperature T_1 are connected to each other through a narrow tube. If the temperature in one of the vessels is now maintained at T_1 and that in the other at T_2 , what will be the pressure in the vessels

- "One gram molecule of a gas at N.T.P. occupies 17. 22.4 litres." This fact was derived from[CPMT 1981, 1995]
 - (a) Dalton's theory
 - (b) Avogadro's hypothesis
 - (c) Berzelius hypothesis
 - (d) Law of gaseous volume
- 18. In a closed flask of 5 litres, 1.0 g of H_2 is heated

from 300 to 600 K. which statement is not correct[CBSE PM (0.94)] is the pressure of the gas when only one

- (a) Pressure of the gas increases
- (b) The rate of collision increases
- (c) The number of moles of gas increases
- (d) The energy of gaseous molecules increases
- 19. Which one of the following statements is false

[Manipal PMT 1991]

- (a) Avogadro number = 6.02×10^{21}
- (b) The relationship between average velocity $(\overline{\nu})$ and root mean square velocity (u) is $\bar{v} = 0.9213 \ u$
- (c) The mean kinetic energy of an ideal gas is independent of the pressure of the gas
- (d) The root mean square velocity of the gas can be calculated by the formula $(3RT/M)^{1/2}$
- The compressibility of a gas is less than unity at 20. STP. Therefore [IIT 2000]
 - (a) $V_m > 22.4 \ litres$
- (b) $V_m < 22.4 \ litres$
- (c) $V_m = 22.4 \ litres$
- (d) $V_m = 44.8 \ litres$
- In the equation of sate of an ideal gas PV = nRT, 21. the value of the universal gas constant would depend only on

[KCET 2005]

- (a) The nature of the gas
- (b) The pressure of the gas
- (c) The units of the measurement
- (d) None of these
- **22.** In the ideal gas equation, the gas constant R has the dimensions of [NCERT 1982]
 - (a) mole-atm K⁻¹
- (b) litre mole
- (c) litre-atm K^{-1} mole⁻¹ (d) erg K^{-1}
- In the equation PV = nRT, which one cannot be the numerical value of R[BIT 1987]
 - (a) $8.31 \times 10^7 erg K^{-1} mol^{-1}$
 - (b) $8.31 \times 10^7 \, dyne \, cm \, K^{-1} mol^{-1}$
 - (c) $8.31 JK^{-1} mol^{-1}$
 - (d) $8.31 \text{ atm. } K^{-1} \text{mol}^{-1}$
- Which one of the following indicates the value of the gas constant R [EAMCET 1989]

- (a) 1.987 cal K⁻¹ mol⁻¹
- (b) 8.3 cal K^{-1} mol^{-1}
- (c) $0.0821 \ lit \ K^{-1} \ mol^{-1}$
- (d) 1.987 Joules K^{-1} mol⁻¹
- The constant R is 25.

[Orissa 1990]

- (a) Work done per molecule
- (b) Work done per degree absolute
- (c) Work done per degree per mole
- (d) Work done per mole
- Select one correct statement. In the gas equation, PV = nRT[CBSE PMT 1992]
 - (a) *n* is the number of molecules of a gas
 - (b) V denotes volume of one mole of the gas
 - (c) *n* moles of the gas have a volume *V*

mole of gas is present

- The correct value of the gas constant *R* is close to [CBSE PMT 1992]
 - (a) 0.082 litre-atmopshere K
 - (b) 0.082 litre-atmosphere K^{-1} mol⁻¹
 - (c) 0.082 litre-atmosphere $^{-1}$ K mole $^{-1}$
 - (d) 0.082 litre⁻¹ atmosphere ⁻¹ K mol
- 28. S.I. unit of gas constant R is [CPMT 1994]
 - (a) 0.0821 litre atm K^{-1} mole⁻¹
 - (b) 2 calories K-1 mole-1
 - (c) 8.31 joule K^{-1} mole⁻¹
 - (d) None
- Gas equation PV = nRT is obeyed by [BHU 2000] 29.
 - (a) Only isothermal process (b)Only adiabatic process
 - (c) Both (a) and (b)
- (d) None of these
- For an ideal gas number of moles per litre in terms of its pressure P, gas constant R and temperature T is

[AIEEE 2002]

- (a) PT/R
- (b) PRT
- (c) P/RT
- (d) RT/P
- If two moles of an ideal gas at 546 K occupy a volume of 44.8 litres, the pressure must be

[NCERT 1981; JIPMER 1991]

- (a) 2 atm
- (b) 3 atm
- (c) 4 atm
- (d) 1 atm
- How many moles of He gas occupy 22.4 litres at $30^{\circ}C$ and one atmospheric pressure **[KCET 1992]**
 - (a) 0.90
- (b) 1.11
- (c) 0.11
- (d) 1.0
- Volume of 0.5 mole of a gas at 1 atm. pressure and 33. 273 K is

[EAMCET 1992]

- (a) 22.4 litres
- (b) 11.2 litres
- (c) 44.8 litres
- (d) 5.6 litres
- At $0^{\circ}C$ and one atm pressure, a gas occupies 100 cc. If the pressure is increased to one and a halftime and temperature is increased by one-third of absolute temperature, then final volume of the gas will be

[DCE 2000]

(a) 80 cc

- (b) 88.9 cc
- (c) 66.7 cc
- (d) 100 cc
- Correct gas equation is [CBSE PMT 1989; CPMT 1991]

 - (a) $\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$
- (b) $\frac{P_1 V_1}{P_2 V_2} = \frac{T_1}{T_2}$
- (a) $\frac{r_1 r_2}{P_1} = \frac{v_2 r_1}{P_2}$ (b) $\frac{P_1 V_1}{P_2 V_2} = \frac{T_1}{T_2}$ (c) $\frac{P_1 T_2}{V_1} = \frac{P_2 V_2}{T_2}$ (d) $\frac{V_1 V_2}{T_1 T_2} = P_1 P_2$
- Two separate bulbs contain ideal gases A and B. The density of gas A is twice that of gas B. The molecular mass of A is half that of gas B. The two gases are at the same temperature. The ratio of the pressure of A to that of gas B is

[BHU 1994]

(a) 2

(b) 1/2

(c) 4

- (d) 1/4
- 16 q of oxygen and 3 q of hydrogen are mixed and 37. kept at 760 mm pressure and $0^{\circ}C$. The total volume occupied by the mixture will be nearly[Vellore 466c 156three unreactive gases having partial pressures
 - (a) 22.4 litres
- (b) 33.6 litres
- (c) 448 litres
- (d) 44800 ml
- 38. Pure hydrogen sulphide is stored in a tank of 100 litre capacity at $20^{\circ}C$ and 2 atm pressure. The mass of the gas will be [CPMT 1989]
 - (a) 34 g
- (b) 340 q
- (c) 282.4 q
- (d) 28.24 q
- At N.T.P. the volume of a gas is found to be 273 ml. What will be the volume of this gas at 600 mm Hq and $273^{\circ}C$

[CPMT 1992]

- (a) 391.8 mL
- (b) 380 ml
- (c) 691.6 ml
- (d) 750 ml
- One litre of a gas weighs 2 g at 300 K and 1 atm pressure. If the pressure is made 0.75 atm, at which of the following temperatures will one litre of the same gas weigh one gram

[CBSE PMT 1992]

- (a) 450 K
- (b) 600 K
- (c) 800 K
- (d) 900 K
- A wheather balloon filled with hydrogen at 1 atm 41. and 27°C has volume equal to 12000 litres. On ascending it reaches a place where the temperature is $-23^{\circ}C$ and pressure is 0.5 atm. The volume of the balloon is

[CBSE PMT 1991]

- (a) 24000 litres
- (b) 20000 litres
- (c) 10000 litres
- (d) 12000 litres
- The density of a gas at $27^{\circ}C$ and 1 atm is d. Pressure remaining constant at which of the following temperatures will its density become 0.75 d [CBSE PMT 1992]
 - (a) $20^{\circ} C$
- (b) $30^{\circ}C$
- (c) 400 K
- (d) 300 K
- A sample of gas occupies 100 ml at $27^{\circ}C$ and 740 43. mm pressure. When its volume is changed to 80

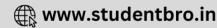
ml at 740 mm pressure, the temperature of the gas will be

[Vellore CMC 1991]

- (a) $21.6^{\circ}C$
- (b) 240°C
- (c) $-33^{\circ}C$
- (d) 89.5°C
- The total pressure exerted by a number of nonreacting gases is equal to the sum of the partial pressures of the gases under the same conditions [CPMT 1986] is known as
 - (a) Boyle's law
- (b) Charle's law
- (c) Avogadro's law
- (d) Dalton's law
- "Equal volumes of all gases at the same temperature and pressure contain equal number of particles." This statement is a direct [Kerala MEE 2002] consequence of
 - (a) Avogadro's law
- (b) Charle's law
- (c) Ideal gas equation pressure
- (d) Law

partial

 P_A, P_B and P_C and their moles are 1, 2 and 3 respectively then their total pressure will be [CPMT 1994]


- (a) $P = P_A + P_B + P_C$ (b) $P = \frac{P_A + P_B + P_C}{6}$
- (c) $P = \frac{\sqrt{P_A + P_B + P_C}}{3}$ (d) None
- Dalton's law of partial pressure will not apply to which of the following mixture of gases[Bihar MADT 1981]
 - (a) H_2 and SO_2
- (b) H_2 and Cl_2
- (c) H_2 and CO_2
- (d) CO_2 and Cl_2
- Which of the following mixtures of gases does not obey Dalton's law of partial pressure

[CBSE PMT 1996: Kerala PMT 2000]

- (a) O_2 and CO_2
- (b) N_2 and O_2
- (c) Cl_2 and O_2
- (d) NH_3 and HCl
- To which of the following gaseous mixtures is Dalton's law not applicable
 - (a) $Ne + He + SO_2$
- (b) $NH_3 + HCl + HBr$
- (c) $O_2 + N_2 + CO_2$
- (d) $N_2 + H_2 + O_2$
- Equal amounts of two gases of molecular weight 4 and 40 are mixed. The pressure of the mixture is 1.1 atm. The partial pressure of the light gas in this mixture is

[CBSE PMT 1991]

- (a) 0.55 atm
- (b) 0.11 atm
- (c) 1 atm
- (d) 0.12 atm
- Rate of diffusion of a gas is [IIT 1985; CPMT 1987]
 - (a) Directly proportional to its density
 - (b) Directly proportional to its molecular mass
 - (c) Directly proportional to the square root of its molecular mass
 - (d) Inversely proportional to the square root of its molecular mass
- Which of the following gas will have highest rate of diffusion

[Pb. CET Sample paper 1993; CPMT 1990]

- (a) NH_3
- (b) N_2
- (c) CO₂
- (d) O_2
- Which of the following relationship is correct, where r is the rate of diffusion of a gas and d is its density [CPMT 1994]
 - (a) $r \propto \sqrt{1/d}$
- (b) $r \propto \sqrt{d}$
- (c) r = d
- (d) $r \propto d$
- According to Grahman's law temperature, the ratio of the rates of diffusion r_A / r_B of gases A and B is given by [IIT 1998]
 - (a) $(P_A/P_B)(M_A/M_B)^{1/2}$
 - (b) $(M_A/M_B)(P_A/P_B)^{1/2}$
 - (c) $(P_A/P_B)(M_B/M_A)^{1/2}$
 - (d) $(M_A/M_B)(P_B/P_A)^{1/2}$

(where P and M are the pressures and molecular weights of gases A and B respectively)

The ratio of the rate of diffusion of a given 55. element to that of helium is 1.4. The molecular weight of the element is

[Kerala PMT 1990]

(a) 2

(b) 4

- (d) 16
- A gas diffuse 1/5 times as fast as hydrogen. Its molecular weight is [CPMT 1992; Bihar CEE 1982]
 - (a) 50
- (c) $25\sqrt{2}$
- (d) $50\sqrt{2}$
- 57. The molecular weight of a gas which diffuses through a porous plug at 1/6th of the speed of hydrogen under identical conditions is[EAMCET 1990] 67.
 - (a) 27
- (b) 72
- (c) 36
- (d) 48
- 58. Molecular weight of a gas that diffuses twice as rapidly as the gas with molecular weight 64 is[EAMCET 1994]c) 0.50
 - (a) 16
- (b) 8
- (c) 64
- (d) 6.4
- The densities of hydrogen and oxygen are 0.09 and 1.44 g L^{-1} . If the rate of diffusion of hydrogen is 1 then that of oxygen in the same units will be [RPMT 1994] c 6 q
 - (a) 4

- (b) 1/4
- (c) 16
- (d) 1/16
- **60.** If rate of diffusion of *A* is 5 times that of *B*, what will be the density ratio of *A* and *B* [AFMC 1994]
 - (a) 1/25
- (b) 1/5
- (d) 4
- The densities of two gases are in the ratio of 1: 61. 16. The ratio of their rates of diffusion is [CPMT 1995]
 - (a) 16:1
- (b) 4:1
- (c) 1:4
- (d) 1:16

- At constant volume and temperature conditions, 62. the rate of diffusion D_A and D_B of gases A and B having densities ρ_A and ρ_B are related by the expression


 - (a) $D_A = \left[D_B \cdot \frac{\rho_A}{\rho_B}\right]^{1/2}$ (b) $D_A = \left[D_B \cdot \frac{\rho_B}{\rho_A}\right]^{1/2}$
 - (c) $D_A = D_B \left(\frac{\rho_A}{\rho_B}\right)^{1/2}$ (d) $D_A = D_B \left(\frac{\rho_B}{\rho_A}\right)^{1/2}$
- 63. Atmolysis is a process of
 - (a) Atomising gas molecules
 - (b) The breaking of atoms to sub-atomic particles
 - (c) Separation of gases from their gaseous mixture
 - (d) Changing of liquids to their vapour state
- A bottle of ammonia and a bottle of dry hydrogen chloride connected through a long tube are opened simultaneously at both ends, the white ammonium chloride ring first formed will be[IIT 1988]
 - (a) At the centre of the tube
 - (b) Near the hydrogen chloride bottle
 - (c) Near the ammonia bottle
 - (d) Throughout the length of the tube
- Which of the following pairs will diffuse at the same rate through a porous plug [EAMCET 1990]
 - (a) CO, NO_2
- (b) NO_2, CO_2
- (c) NH_3, PH_3
- (d) NOC_2H_6
- **66.** If q of oxygen diffuse through a very narrow hole, how much hydrogen would have diffused under identical conditions [CPMT 1971]
 - (a) 16 q
- (b) 1 q
- (c) 1/4 q
- (d) 64 q
- A gas diffuse at a rate which is twice that of another gas B. The ratio of molecular weights of A [EAMCET 1986] to B is
- (a) 1.0
- (b) 0.75
- (d) 0.25
- Two grams of hydrogen diffuse from a container in 10 minutes. How many grams of oxygen would diffuse through the same container in the same time under similar conditions
 - (a) 0.5 q
- (b) 4 q
- (d) 8q
- 69. The rate of diffusion of methane at a given temperature is twice that of X. The molecular weight of X is

[MNR 1995; Kerala CEE 2001]

- (a) 64.0
- (b) 32.0
- (c) 40.0
- (d) 80.0
- X ml of H_2 gas effuses through a hole in a container in 5 seconds. The time taken for the effusion of the same volume of the gas specified below under identical condition is

[IIT 1996]

240 Gaseous state (a) 10 seconds: He (b) 20 seconds : O_2 (b) $\frac{1}{2}$ that of SO_2 (c) 25 seconds: CO (d) 55 seconds : *CO*₂ (c) Twice that of SO_2 At what temperature, the rate of effusion of N_2 (d) One fourth that of SO_2 would be 1.625 times that of SO_2 at $50^{\circ}C$ [CBSE PMT 1996] (b) 173 K Five grams each of the following gases at $87^{\circ}C$ (a) 110 K and 750 mm pressure are taken. Which of them (c) 373 K (d) 273 K will have the least volume [MNR 1991] **72.** Given the reaction $C(s) + H_2O(l) \rightarrow CO(g) + H_2(g)$ (a) HF (b) HCl calculate the volume of the gases produced at STP (c) HBr (d) HI from 48.0 g of carbon 82. Who among the following scientists has not done (a) 179.2 L (b) 89.6 L any important work on gases [Bihar MADT 1980] (d) 22.4 L (c) 44.8 L (a) Boyle (b) Charles 4.4 q of a gas at STP occupies a volume of 2.24 L, the gas can be [Haryana CEET 2000] (c) Avogadro (d) Faraday (b) CO A closed vessel contains equal number of nitrogen (a) O_2 83. and oxygen molecules at a pressure of P mm. If (c) NO_2 (d) CO_2 nitrogen is removed from the system then the Under what conditions will a pure sample of an pressure will be ideal gas not only exhibit a pressure of 1 atm but [MP PMT 1985] also a concentration of 1 mole litre-1 (a) P (b) 2P $(R = 0.082 \ litre \ atm \ mol^{-1} \ deg^{-1})$ [CBSE PMT 1993] (d) P^2 (c) P/2(a) At STP If the four tubes of a car are filled to the same (b) When V = 22.4 litres pressure with N_2, O_2, H_2 and Ne separately, then (c) When T = 12 Kwhich one will be filled first [Manipal PMT 2001] (d) Impossible under any conditions (a) N_2 (b) O_2 There are 6.02×10^{22} molecules each of N_2, O_2 and (c) H_2 H_2 which are mixed together at 760 mm and 273 85. Which of the following gas mixture is not K. The mass of the mixture in grams is [Pb. PMT 1997] applicable for Dalton's law of partial pressure[Pb. CET 20 (a) 6.2 (b) 4.12 (a) SO_2 and Cl_2 (b) CO_2 and N_2 (c) 3.09 (d) 7 (c) CO and CO_2 (d) CO and N_2 **76.** Volume of 4.4 g of CO_2 at NTP is [Pb. CET 1997] At what pressure a quantity of gas will occupy a (a) 22.4 L (b) 44.8 L volume of 60 ml, if it occupies a volume of 100 ml (d) 4.48 L (c) 2.24 L at a pressure of 720 mm? (while temperature is The energy of an ideal gas depends only on its constant): [Pb. CET 2000] (a) Pressure (b) Volume (a) 700 mm (b) 800 mm (c) Number of moles (d) Temperature (c) 100 mm (d) 1200 mm A bottle of cold drink contains 200 ml liquid in At constant temperature and pressure which gas which CO_2 is 0.1 molar. Suppose CO_2 behaves will diffuse first H_2 or O_2 ? [Pb. CET 2000] like an ideal gas, the volume of the dissolved CO_2 (a) Hydrogen at STP is [CBSE PMT 1991] (b) Oxygen (a) 0.224 litre (b) 0.448 litre (c) Both will diffuse in same time (c) 22.4 litre (d) 2.24 litre (d) None of the above The vapour density of a gas is 11.2. The volume When a jar containing gaseous mixture of equal occupied by 11.2 g of this gas at N.T.P. is volumes of CO_2 and H_2 is placed in a solution of [MNR 1982; CBSE PMT 1991] sodium hydroxide, the solution level will[Pb. CET 2001] (b) 11.2 L (a) 1 L

(a) The same as that of SO_2

(d) 20 L

and again weighted. The weight of oxygen will be [NCERT 1989]) 22.4 litre

A pre-weighed vessel was filled with oxygen at

N.T.P. and weighted. It was then evacuated, filled with SO_2 at the same temperature and pressure,

(c) 22.4 L

(a) Rise

(c) Remain constant

(c) 0.224 litre

[Pb. CET 2000]

(b) Fall

89. At S.T.P. $1g CaCO_3$ on decomposition gives CO_3

(d) Become zero

(b) 2.24 litre

(d) 11.2 litre

90. At NTP, the density of a gas, whose molecular weight is 45 is

[Pb. CET 2001, 03]

- (a) 44.8 gm/litre
- (b) 11.4 gm/litre
- (c) 2 gm/ litre
- (d) 3 gm/litre
- What is the ratio of diffusion rate of oxygen and hydrogen

[Pb. CET 2003]

- (a) 1:4
- (b) 4:1
- (c) 1:8
- (d) 8:1
- The maximum number of molecules is present in 92. [CBSE PMT 2004]
 - (a) 0.5 g of H_2 gas
- (b) 10 g of O_2 gas
- (c) 15 L of H_2 gas at STP(d) 5 L of N_2 gas at STP
- 93. One litre oxygen gas at STP will weigh[Pb. CET 2004]
 - (a) 1.43 g
- (b) 2.24 g
- (c) 11.2 q
- (d) 22.4 q
- 94. How will you separate mixture of two gases[AFMC 2004]
 - (a) Fractional distillation technique
 - (b) Grahams law of diffusion technique
 - (c) Osmosis
 - (d) Chromatography
- The rate of diffusion of hydrogen gas is 95.

[MH CET 2003; Pb. CET 2000]

- (a) 1.4 times to He gas (b) Same as He gas
- (c) 5 times to He gas
- (d) 2 times to He gas
- **96.** Hydrogen diffuses six times faster than gas A. The molar mass of gas A is [KCET 2004]

 - (a) 72
- (d) 36
- At what pressure will a quantity of gas, which occupies 100 ml at a pressue of 720 mm, occupy a

volume of 84 ml

[DPMT 2004]

- (a) 736.18 mm
- (b) 820.20 mm
- (c) 784.15 mm
- (d) 857.14 mm
- **98.** Containers A and B have same gases. Pressure, volume and temperature of A are all twice that of B, then the ratio of number of molecules of Aand B are [AFMC 2004]

(a) 1:2

- (b) 2
- (c) 1:4
- (d) 4
- A mixture of NO_2 and N_2O_4 has a vapour density 99. of 38.3 at 300 K. What is the number of moles of NO_2 in 100 g of the mixture [Kerala PMT 2004]
 - (a) 0.043
- (b) 4.4
- (c) 3.4
- (d) 3.86
- (e) 0.437
- 100. A cylinder of 5 litres capacity, filled with air at NTP is connected with another evacuated cylinder of 30 litres of capacity. The resultant air pressure in both the cylinders will be
 - (a) 10.8 cm of Hg
- (b) 14.9cm of Hg
- (c) 21.8 cm of Hg
- (d) 38.8 cm of Hg

- 101. A certain mass of gas occupies a volume of 300 c.c. at 27C and 620 mm pressure. The volume of this gas at $47^{\circ}C$ and 640 mm pressure will be [MH CET 20]
 - (a) 400 c.c.
- (b) 510 c.c.
- (c) 310 c.c.
- (d) 350 c.c.
- 102. What will be the volume of the mixture after the reaction?

 $NH_3 + HCl \rightarrow NH_4Cl$ 4 litre 1.5 litre (solid)

[BVP 2004]

- (a) 0.5 litre
- (b) 1 litre
- (c) 2.5 litre
- (d) 0.1 litre
- **103.** The pressure and temperature of $4dm^3$ of carbon dioxide gas are doubled. Then the volume of carbon dioxide gas would be [KCET 2004]
 - (a) $2 dm^3$
- (b) $3dm^3$
- (c) $4 dm^3$
- (d) $8 dm^3$
- 104. If the absolute temperature of an ideal gas become double and pressure become half, the volume of gas would be

[Kerala CET 2005]

- (a) Remain unchange (b) Will be double
- (c) Will be four time
 - (d) will be half
- (e) Will be one fourth
- 105. At what temperature, the sample of neon gas would be heated to double of its pressure, if the initial volume of gas is/are reduced to 15% at [Kerala CET 2005]
 - (a) 319°C
- (b) 592°C
- (c) 128°C
- (d) $60^{\circ}C$
- (e) $90^{\circ}C$
- 106. Equation of Boyle's law is

[DPMT 2005]

- (a) $\frac{dP}{D} = -\frac{dV}{V}$
- (b) $\frac{dP}{P} = +\frac{dV}{V}$
- (c) $\frac{d^2 P}{P} = -\frac{dV}{dT}$ (d) $\frac{d^2 P}{P} = +\frac{d^2 V}{dT}$

Kinetic molecular theory of gases and Molecular collisions

- Postulate of kinetic theory is [EAMCET 1980]
 - (a) Atom is indivisible
 - (b) Gases combine in a simple ratio
 - (c) There is no influence of gravity on the molecules of a gas
 - (d) None of the above
- According to kinetic theory of gases, [EAMCET 1980]
 - (a) There are intermolecular attractions
 - (b) Molecules have considerable volume
 - (c) No intermolecular attractions
- (d) The velocity of molecules decreases after each collision

In deriving the kinetic gas equation, use is made 3. of the root mean square velocity of the molecules because it is

[Bihar MADT 1980]

- (a) The average velocity of the molecules
- (b) The most probable velocity of the molecules
- (c) The square root of the average square velocity of the molecules
- (d) The most accurate form in which velocity can be used in these calculations
- Kinetic energy of a gas depends upon its[Bihar 4. MADT 1982]
 - (a) Molecular mass
- (b) Atomic mass
- (c) Equivalent mass
- (d) None of these
- The kinetic theory of gases perdicts that total 5. kinetic energy of a gaseous assembly depends on [NCERT 1984]. Have equal average kinetic energies
 - (a) Pressure of the gas
 - (b) Temperature of the gas
 - (c) Volume of the gas
 - (d) Pressure, volume and temperature of the gas
- According to kinetic theory of gases, the energy 6. per mole of a gas is equal to [EAMCET 1985]
 - (a) 1.5 RT
- (b) RT
- (c) 0.5 RT
- (d) 2.5 RT
- 7. Internal energy and pressure of a gas per unit volume are related as [CBSE PMT 1993]
 - (a) $P = \frac{2}{3}E$
- (b) $P = \frac{3}{2}E$
- (c) $P = \frac{1}{2}E$
- (d) P = 2E
- 8. The translational kinetic energy of an ideal gas depends only on its
 - (a) Pressure
- (b) Force
- (c) Temperature
- (d) Molar mass
- Helium atom is two times heavier than a 9. hydrogen molecule at 298 K, the average kinetic [IIT 1982] energy of helium is
 - (a) Two times that of a hydrogen molecule
 - (b) Same as that of a hydrogen molecule
 - (c) Four times that of a hydrogen molecule
 - (d) Half that of a hydrogen molecule
- Which of the following is valid at absolute zero

[Pb. CET 1985]

- (a) Kinetic energy of the gas becomes zero but the molecular motion does not become zero
- (b) Kinetic energy of the gas becomes zero and molecular motion also becomes zero
- (c) Kinetic energy of the gas decreases but does not become zero
- (d) None of the above
- The average K.E. of an ideal gas in calories per mole is approximately equal to [EAMCET 1989]
 - (a) Three times the absolute temperature
 - (b) Absolute temperature
 - (c) Two times the absolute temperature
 - (d) 1.5 times the absolute temperature

12. According to kinetic theory of gases, for a diatomic molecule

[MNR 1991]

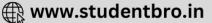
- (a) The pressure exerted by the gas proportional to the mean velocity of the molecules
- (b) The pressure exerted by the gas is proportional to the root mean square velocity of the molecules
- (c) The root mean square velocity is inversely proportional to the temperature
- (d) The mean translational kinetic energy of the molecules is proportional to the absolute temperature
- At STP, 0.50 $mol\ H_2$ gas and 1.0 $mol\ He$ gas

[CBSE PMT 1993, 2000]

- (b) Have equal molecular speeds
- (c) Occupy equal volumes
- (d) Have equal effusion rates
- Which of the following expressions correctly represents the relationship between the average molar kinetic energy, K.E., of CO and N_2 molecules at the same temperature

[CBSE PMT 2000]

- (a) $\overline{KE}_{CO} = \overline{KE}_{N_2}$
- (b) $\overline{KE}_{CO} > \overline{KE}_{N_2}$
- (c) $\overline{KE}_{CO} < \overline{KE}_{N_2}$
- (d) Cannot be predicted unless the volumes of the gases are given
- Indicate the correct statement for a 1-L sample of $N_2(g)$ and $CO_2(g)$ at 298 K and 1 atm pressure
 - (a) The average translational KE per molecule is the same in N_2 and CO_2
 - (b) The rms speed remains constant for both N_2 and CO_2
 - (c) The density of N_2 is less than that of CO_2
 - (d) The total translational $\mbox{\it KE}$ of both $\mbox{\it N}_2$ and CO_2 is the same
- With increase of pressure, the mean free path 16. [Pb. CET 1985]


(a) Decreases

(b) Increases

(c) Does not change

- (d) Becomes zero
- Which one of the following statements is NOT true about the effect of an increase in temperature on the distribution of molecular [AIEEE 2005] speeds in a gas
 - (a) The most probable speed increases
 - (b) The fraction of the molecules with the most probable speed increases
 - (c) The distribution becomes broader
 - (d) The area under the distribution curve remains the same as under the lower temperature

- If P, V, M, T and R are pressure, volume, molar 18. mass, temperature and gas constant respectively, then for an ideal gas, the density is given by [CBSE PMT 1989, 91] on expansion.

- An ideal gas will have maximum density when [CPMT 2000] 19.
 - (a) P = 0.5 atm, T = 600 K
 - (b) P = 2 atm, T = 150 K
 - (c) P = 1 atm, T = 300 K
 - (d) P = 1.0 atm, T = 500 K
- If the inversion temperature of a gas is $-80^{\circ}C$, then it will produce cooling under Joule-Thomson effect at
 - (a) 298 K
- (b) 273 K
- (c) 193 K
- Ratio of C_n and C_v of a gas 'X' is 1.4. The number 21. of atoms of the gas 'X' present in 11.2 litres of it at N.T.P. is

[CBSE PMT 1989]

- (a) 6.02×10^{23}
- (b) 1.2×10^{24}
- (c) 3.01×10^{23}
- (d) 2.01×10^{23}
- The density of air is 0.00130 g/ml. The vapour 22. density of air will be [DCE 2000]
 - (a) 0.00065
- (b) 0.65
- (c) 14.4816
- (d) 14.56
- At $100^{\circ}C$ and 1 atm, if the density of liquid water is 1.0 g cm^{-3} and that of water vapour is 0.0006 q m^{-3} , then the volume occupied by water molecules in 1 litre of steam at that temperature [IIT 2000]
 - (a) $6 cm^3$
- (b) 60 cm^3
- (c) 0.6 cm^3
- (d) $0.06 \ cm^3$
- **24.** The ratio γ for inert gases is
- [AFMC 1990]
- (a) 1.33
- (b) 1.66
- (c) 2.13
- (d) 1.99
- 25. The density of neon will be highest at [CBSE PMT 1990]
 - (a) S.T.P.
- (b) $0^{\circ} C$, 2 atm
- (c) 273°C,1 atm
- (d) 273°C, 2 atm
- **26.** Absolute zero is defined as the temperature

[CBSE PMT 1990]

- (a) At which all molecular motion ceases
- (b) At which liquid helium boils
- (c) At which ether boils
- (d) All of the above
- Consider the following statements:
 - (1) Joule-Thomson experiment is isoenthalpic as well as adiabatic.

- (2) A negative value of μ_{JT} (Joule Thomson coefficient corresponds to warming of a gas
- (3) The temperature at which neither cooling nor heating effect is observed is known as inversion temperature.

Which of the above statements are correct

- (a) 1 and 2
- (b) 1 and 3
- (c) 2 and 3
- (d) 1, 2 and 3
- Vibrational energy is
- [Pb. CET 1985]
- (a) Partially potential and partially kinetic
- (b) Only potential
- (c) Only kinetic
- (d) None of the above
- 29. At the same temperature and pressure, which of the following gases will have the highest kinetic energy per mole

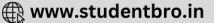
[MNR 1991]

- (a) Hydrogen
- (b) Oxygen
- (c) Methane
- (d) All the same
- Dimensions of pressure are the same as that of 30.

[CBSE PMT 1995]

- (a) Energy
- (b) Force
- (c) Energy per unit volume (d)Force per unit volume
- The density of a gas An is three times that of a gas B. if the molecular mass of A is M, the molecular mass of B is

[CPMT 1987]


- (a) 3 M
- (b) $\sqrt{3} M$
- (c) M/3
- (d) $M/\sqrt{3}$

Molecular speeds

- The ratio of root mean square velocity to average velocity of gas molecules at a particular temperature is [IIT 1981]
 - (a) 1.086:1
- (b) 1:1.086
- (c) 2:1.086
- (d) 1.086:2
- Which is not true in case of an ideal gas[CBSE PMT 1991]
 - (a) It cannot be converted into a liquid
 - (b) There is no interaction between the molecules
- (c) All molecules of the gas move with same speed
 - (d) At a given temperature, PV is proportional to the amount of the gas
- The ratio among most probable velocity, mean 3. velocity and root mean square velocity is given by [CBSE P
 - (a) 1:2:3
- (b) $1:\sqrt{2}:\sqrt{3}$
- (c) $\sqrt{2}:\sqrt{3}:\sqrt{8/\pi}$
- (d) $\sqrt{2}:\sqrt{8/\pi}:\sqrt{3}$
- Which of the following has maximum root mean square velocity at the same temperature[Manipal PMT 200
 - (a) SO_2
- (b) *CO*₂
- (c) O_2
- (d) H_2

- 244 Gaseous state The temperature at which RMS velocity of SO₂ 14. Molecular velocities of the two gases at the same 5. molecules is half that of He molecules at 300 K is [NTSE 1991] temperature are u_1 and u_2 . Their masses are m_1 and m_2 respectively. Which of the following (b) 600 K (a) 150 K expressions is correct (c) 900 K (d) 1200 K [BHU 1994] 6. At $27^{\circ}C$, the ratio of rms velocities of ozone to oxygen is [EAMCET 1992] (c) $\frac{m_1}{u_1} = \frac{m_2}{u_2}$ (a) $\sqrt{3/5}$ (b) $\sqrt{4/3}$ (c) $\sqrt{2/3}$ (d) 0.25The temperature of the gas is raised from $27^{\circ}C$ The average kinetic energy of an ideal gas per 7. molecule in SI units at $25^{\circ}C$ will be [CBSE PMT 1996] (a) $\sqrt{927/27}$ times the earlier value (a) $6.17 \times 10^{-21} kJ$ (b) $6.17 \times 10^{-21} J$ (b) Same as before (c) Halved (c) $6.17 \times 10^{-20} J$ (d) $7.16 \times 10^{-20} J$ (d) Doubled At what temperature the RMS velocity of SO_2 be 8. The ratio between the root mean square velocity of H_2 at 50 K and that of O_2 at 800 K is [IIT 1996] same as that of O_2 at 303 K(b) 2 (a) 273 K (b) 606 K (c) 1 (d) 1/4(c) 303 K (d) 403 K The root mean square velocity of an ideal gas at Among the following gases which one has the 9. constant pressure varies density (d) as [IIT 2000] lowest root mean square velocity at 25° C [EAMCET 1983] (a) *SO*₂ (b) N_2 (c) \sqrt{d} (d) $1/\sqrt{d}$ Consider a mixture of SO_2 and O_2 kept at room (c) O_2 temperature. Compared to the oxygen molecule, The root mean square velocity of an ideal gas in a the SO₂ molecule will hit the wall with closed container of fixed volume is increased from (a) Smaller average speed (b)Greater average speed $5 \times 10^4 \text{ cm s}^{-1}$ to $10 \times 10^4 \text{ cm s}^{-1}$. Which of the (c) Greater kinetic energy (d) Greater mass following statement correctly explains how the The rms speed of N_2 molecules in a gas is u. If the change is accomplished temperature is doubled and the nitrogen [Pb. CET 1986] molecules dissociate into nitrogen atoms, the rms (a) By heating the gas, the temperature is doubled speed becomes (b) By heating the gas, the pressure is quadrupled (a) u/2(b) 2u (i.e. made four times) (c) 4u (d) 14u (c) By heating the gas, the temperature is Choose the correct arrangement, where the quadrupled symbols have their usual meanings (d) By heating the gas, the pressure is doubled (b) $u_{rms} > \overline{u} > u_p$ (a) $\overline{u} > u_p > u_{rms}$ The rms velocity at NTP of the species can be 11. (c) $u_p > \overline{u} > u_{rms}$ (d) $u_p > u_{rms} > \overline{u}$ calculated from the expression [EAMCET 1990] The ratio of most probable velocity to that of 21. (b) $\sqrt{\frac{3 PV}{M}}$ (a) $\sqrt{\frac{3P}{d}}$ average velocity is [JEE Orissa 2004] (a) $\pi/2$ (b) $2/\pi$ (c) $\sqrt{\pi}/2$ (d) $2/\sqrt{\pi}$ (c) $\sqrt{\frac{3 RT}{M}}$ (d) All the above
 - Root mean square velocity of a gas molecule is proportional to [CBSE PMT 1990]
 - (a) $m^{1/2}$
- (b) m^0
- (c) $m^{-1/2}$
- (d) m
- At constant volume, for a fixed number of moles 13. of a gas, the pressure of the gas increases with increase in temperature due to
 - (a) Increase in the average molecular speed
 - (b) Increased rate of collision amongst molecules
 - (c) Increase in molecular attraction
 - (d) Decrease in mean free path

to $927^{\,o}C$, the root mean square velocity is [CBSE PMT 1994

The r.m.s. velocity of a certain gas is v at 300 K. The temperature, at which the r.m.s. velocity becomes double

[Pb. CET 2002]

- (a) 1200 K
- (b) 900 K
- (c) 600 K
- (d) 150K
- The r.m.s. velocity of a gas depends upon[DCE 2002]
 - (a) Temperature only
 - (b) Molecular mass only
 - (c) Temperature and molecular mass of gas
 - (d) None of these

- What is the pressure of 2 mole of NH_3 at $27^{\circ}C$ 24. when its volume is 5 litre in vander Waal's equation (a = 4.17, b = 0.03711) [JEE Orissa 2004] (a) 10.33 atm
 - (c) 9.74 atm
- (b) 9.33 atm (d) 9.2 atm
- The root mean square velocity of one mole of a 25. monoatomic having molar mass M is U_{ms} . The relation between the average kinetic energy (E) of the U_{rms} is

[IIT-JEE Screening 2004]

- (a) $U_{rms} = \sqrt{\frac{3E}{2M}}$ (b) $U_{rms} = \sqrt{\frac{2E}{3M}}$
- (c) $U_{rms} = \sqrt{\frac{2E}{M}}$
- (d) $U_{rms} = \sqrt{\frac{E}{3M}}$
- 26. Ratio of average to most probable velocity is [Orissa JEE 2005]

- (b) 1.224
- (a) 1.128 (c) 1.0
- (d) 1.112
- **27.** If the v_{rms} is $30R^{1/2}$ at $27^{o}C$ then calculate the molar mass of gas in kilogram. [DPMT 2005]
 - (a) 1

(b) 2

(c) 4

(d) 0.001

Real gases and Vander waal's equation

- The Vander Waal's equation explains 1. behaviour of
 - [DPMT 1981]

- (a) Ideal gases
- (b) Real gases
- (c) Vapour
- (d) Non-real gases
- 2. Gases deviate from the ideal gas behaviour because their molecules [NCERT 1981]
 - (a) Possess negligible volume
 - (b) Have forces of attraction between them
 - (c) Are polyatomic
 - (d) Are not attracted to one another
- The compressibility factor of a gas is defined as 3. Z = PV / RT. The compressibility factor of ideal gas is

[Pb. CET 1986]

- (a) o
- (b) Infinity

(c) 1

- (d) -1
- In Vander Waal's equation of state for a non-ideal gas, the term that accounts for intermolecular forces is

[CBSE PMT 1990; IIT 1988]

- (a) (V-b)
- (b) $(RT)^{-1}$
- (c) $\left(P + \frac{a}{V^2}\right)$
- (d) RT
- Vander Waal's equation of state is obeyed by real 5. gases. For n moles of a real gas, the expression will be

(a)
$$\left(\frac{P}{n} + \frac{na}{V^2}\right) \left(\frac{V}{n-b}\right) = RT$$

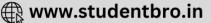
(b)
$$\left(P + \frac{a}{V^2}\right)(V - b) = nRT$$

(c)
$$\left(P + \frac{na}{V^2}\right)(nV - b) = nRT$$

(d)
$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

Any gas shows maximum deviation from ideal gas

[CPMT 1991]


- (a) $0^{\circ}C$ and 1 atmospheric pressure
- (b) $100^{\circ}C$ and 2 atmospheric pressure
- (c) $-100^{\circ}C$ and 5 atmospheric pressure
- (d) $500^{\circ}C$ and 1 atmospheric pressure
- The temperature at which the second virial 7. coefficient of real gas is zero is called [AFMC 1993]
 - (a) Critical temperature
 - (b) Eutetic point
 - (c) Boiling point
 - (d) Boyle's temperature
- 8. When is deviation more in the behaviour of a gas from the ideal gas equation PV = nRT

[DPMT 1981; NCERT 1982; CBSE PMT 1993]

- (a) At high temperature and low pressure
- (b) At low temperature and high pressure
- (c) At high temperature and high pressure
- (d) At low temperature and low high pressure
- Vander Waal's constants 'a' and 'b' are related with.... respectively [RPMT 1994]
 - (a) Attractive force and bond energy of molecules
 - (b) Volume and repulsive force of molecules
 - (c) Shape and repulsive forces of molecules
 - (d) Attractive force and volume of the molecules
- 10. Gas deviates from ideal gas nature because molecules

[CPMT 1996]

- (a) Are colourless
- (b) Attract each other
- (c) Contain covalent bond
- (d) Show Brownian movement
- The Vander Waal's equation reduces itself to the 11. ideal gas equation at [Kerala MEE 2001; CBSE PMT 2002]
 - (a) High pressure and low temperature
 - (b) Low pressure and low temperature
 - (c) Low pressure and high temperature
 - (d) High pressure and high temperature
- The compressibility factor for an ideal gas is[IIT 1997] 12.
 - (a) 1.5
- (b) 1.0
- (c) 2.0
- (d) ∞
- When an ideal gas undergoes unrestrained 13. expansion, no cooling occurs because the molecules [IIT 1984, 89]
 - (a) Are above the inversion temperature

- (b) Exert no attractive force on each other
- (c) Do work equal to loss in kinetic energy
- (d) Collide without loss of energy
- A gas is said to behave like an ideal gas when the 14. relation PV/T = constant. When do you expect a real gas to behave like an ideal gas

[IIT 1999; CBSE PMT 1990; CPMT 1991]

- (a) When the temperature is low
- (b) When both the temperature and pressure are low
- (c) When both the temperature and pressure are high
- (d) When the temperature is high and pressure is low
- A real gas most closely approaches the behaviour 15. of an ideal gas at [KCET 1992]
 - (a) 15 atm and 200 K
- (b) 1 atm and 273 K
- (c) 0.5 atm and 500 K
- (d) 15 atm and 500 K
- 16. The temperature at which real gases obey the ideal gas laws over a wide range of pressure is called

[AFMC 1993; IIT 1981, 94]

- (a) Critical temperature
- (b) Boyle temperature
- (c) Inversion temperature
- (d) Reduced temperature
- At low pressure, the Vander Waal's equation is 17.

(a)
$$Z = \frac{pV_m}{RT} = 1 - \frac{ap}{RT}$$

(a)
$$Z = \frac{pV_m}{RT} = 1 - \frac{ap}{RT}$$
 (b) $Z = \frac{pV_m}{RT} = 1 + \frac{b}{RT}p$

(c)
$$pV_m = RT$$

(c)
$$pV_m = RT$$
 (d) $Z = \frac{pV_m}{RT} = 1 - \frac{a}{RT}$

At high temperature and low pressure, the Vander Waal's equation is reduced to

(a)
$$\left(p + \frac{a}{V_m^2}\right)(V_m) = RT$$

(b) $pV_m = RT$

low

(c) $p(V_m - b) = RT$

(d)
$$\left(p + \frac{a}{V_m^2}\right)(V_m - b) = RT$$

- When helium is allowed to expand into vacuum, 19. heating effect is observed. Its reason is that [CPMT 1987]
 - (a) Helium is an ideal gas
 - (b) Helium is an inert gas
 - (c) The inversion temperature of helium is very
- (d) The boiling point of helium is the lowest among the elements

- In van der Waal's equation of state of the gas law, 20. the constant 'b' is a measure of [AIEEE 2004]
 - (a) Volume occupied by the molecules
 - (b) Intermolecular attraction
 - (c) Intermolecular repulsions
 - (d) Intermolecular collisions per unit volume
- In which molecule the vander Waal's force is 21. likely to be the most important in determining the m.pt. and b.pt.

[DPMT 2000]

- (a) H_2S
- (b) Br_2
- (c) HCl
- (d) CO
- Pressure exerted by 1 mole of methane in a 0.25 22. litre container at 300K using vander Waal's equation

$$1 = 2.253 \text{ atm } l^2 \text{ mol}^{-2}, b = 0.0428 \text{ lit mol}^{-1}) \text{ is}$$

[Orissa JEE 2005]

- (a) 82.82 atm
- (b) 152.51 atm
- (c) 190.52 atm
- (d) 70.52 atm

Critical state and Liquefaction of gases

- 1. Which set of conditions represents easiest way to liquefy a gas [NCERT 1983]
 - (a) Low temperature and high pressure
 - (b) High temperature and low pressure
 - (c) Low temperature and low pressure
 - (d) High temperature and high pressure
- Adiabatic demagnetisation is a technique used for 2. [BHU 1984]
 - (a) Adiabatic expansion of a gas
 - (b) Production of low temperature
 - (c) Production of high temperature
 - (d) None
- An ideal gas can't be liquefied because[CBSE PMT 1992] 3.
 - (a) Its critical temperature is always above $0^{\circ}C$
 - (b) Its molecules are relatively smaller in size
 - (c) It solidifies before becoming a liquid
- (d) Forces operative between its molecules are negligible
- However great the pressure, a gas cannot be liquefied above its
 - (a) Boyle temperature
 - (b) Inversion temperature
 - (c) Critical temperature
 - (d) Room temperature
- An ideal gas obeying kinetic theory of gases can be liquefied if [CBSE PMT 1995]
- (a) Its temperature more than critical temperature T_c
 - (b) Its pressure is more than critical pressure P_c

- (c) Its pressure is more than P_c at a temperature less than T_c
- (d) It cannot be liquefied at any value of P and T6. The Vander Waal's parameters for gases W, X, Yand Z are

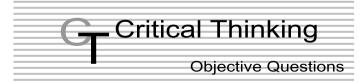
Gas	a (atm L² mol-²)	b (L mol ⁻¹)
W	4.0	0.027
X	8.0	0.030
Y	6.0	0.032
Z	12.0	0.027

Which one of these gases has the highest critical temperature

(a) W

(b) X

(c) Y


- (d) Z
- The Vander Waal's constant 'a' for the gases 7. O_2, N_2, NH_3 and CH_4 are 1.3, 1.390, 4.170 and 2.253 $L^2 atm \, mol^{-2}$ respectively. The gas which can be most easily liquefied is

[IIT 1989]

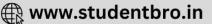
- (a) O_2
- (b) N_2
- (c) NH_3
- (d) CH_4
- A gas can be liquefied

[AFMC 2005]

- (a) Above its critical temperature
 - (b) At its critical temperature
 - (c) Below its critical temperature
 - (d) At any temperature
- Which of the following is correct for critical 9. temperature
 - (a) It is the highest temperature at which liquid and vapour can coexist
 - (b) Beyond the critical temperature, there is no distinction between the two phases and a gas cannot be liquefied by compression
 - (c) At critical temperature (T_c) the surface tension of the system is zero
 - (d) At critical temperature the gas and the liquid phases have different critical densities
- A gas has a density of 2.68 g/L at stp. Identify the gas
 - (a) NO_2
- (b) Kr
- (c) COS
- (d) SO_2
- Weight of 112 ml of oxygen at NTP on liquefaction 11. would be [DPMT 1984]
 - (a) 0.32 q
- (b) 0.64 q
- (c) 0.16 g
- (d) 0.96 g

- As the temperature is raised from $20^{\,o}\,C$ to $40^{\,o}\,C$ the average kinetic energy of neon atoms changes by a factor of which of the following [AIEEE 2004]
 - (a) 313/293
- (b) $\sqrt{(313/293)}$
- (c) 1/2
- (d) 2
- 2.. A gas is found to have a formula $[CO]_r$. If its vapour density is 70, the value of x is [DCE 2004]
 - (a) 2.5
- (b) 3.0
- (c) 5.0
- (d) 6.0
- Which of the given sets of temperature and 3. pressure will cause a gas to exhibit the greatest deviation from ideal gas behavior [DCE 2003]
 - (a) $100^{\circ} C$ and 4 atm
- (b) $100^{\circ} C$ and 2 atm
- (c) $-100^{\circ} C$ and 4 atm (d) $0^{\circ} C$ and 2 atm
- The molecular weight of O_2 and SO_2 are 32 and 64 respectively. If one litre of O_2 at $15^{\circ}C$ and 750 mm pressure contains 'N' molecules, the number of molecules in two litres of SO2 under the same conditions of temperature and pressure will be [CBSE 1990; MNR 1991]
 - (a) N/2
- (b) N
- (c) 2N
- (d) 4N
- What is the relationship between the average 5. velocity (v), root mean square velocity (u) and most probable velocity (a)

[AFMC 1994]


- (a) $\alpha: v: u:: 1:1.128:1.224$
- (b) $\alpha : v : u :: 1.128 : 1 : 1.224$
- (c) $\alpha: v: u:: 1.128: 1.224: 1$
- (d) $\alpha : v : u :: 1.124 : 1.228 : 1$
- 6. Consider the following statements: For diatomic gases, the ratio C_p / C_v is equal to
 - (1) 1.40 (lower temperature)
 - (2) 1.66 (moderate temperature)
 - (3) 1.29 (higher temperature)

which of the above statements are correct

- (a) 1, 2 and 3
- (b) 1 and 2
- (c) 2 and 3
- (d) 1 and 3
- The compressibility factor for an ideal gas is [MP PET 2004
 - (a) 1.5
- (b) 1.0
- (c) 2.0
- (d) ∞
- 8. The compressibility factor of a gas is less than 1 at STP. Its molar volume V_m will be [MP PET 2004]
 - (a) $V_m > 22.42$
- (b) $V_m < 22.42$
- (c) $V_m = 22.42$
- (d) None
- If some moles of O_2 diffuse in 18 sec and same moles of other gas diffuse in 45 sec then what is the molecular weight of the unknown gas[CPMT 1988]

- (a) $\frac{45^2}{18^2} \times 32$
- (b) $\frac{18^2}{45^2} \times 32$
- (c) $\frac{18^2}{45^2 \times 32}$
- (d) $\frac{45^2}{18^2 \times 32}$
- **10.** The ratio of rates of diffusion of SO_2, O_2 and CH_4 is

[BHU 1992]

- (a) $1:\sqrt{2}:2$
- (b) 1:2:4
- (c) $2:\sqrt{2}:1$
- (d) $1:2:\sqrt{2}$
- 11. If C_1, C_2, C_3 represent the speeds of n_1, n_2, n_3 molecules, then the root mean square speed is[IIT 199318.

(a)
$$\left(\frac{n_1C_1^2 + n_2C_2^2 + n_3C_3^2 + \dots}{n_1 + n_2 + n_3 + \dots}\right)^{1/2}$$

(b)
$$\frac{(n_1C_1^2 + n_2C_2^2 + n_3C_3^2 +)^{1/2}}{n_1 + n_2 + n_3 +}$$

(c)
$$\frac{(n_1C_1^2)^{1/2}}{n_1} + \frac{(n_2C_2^2)^{1/2}}{n_2} + \frac{(n_3C_3^2)^{1/2}}{n_3} + \dots$$

(d)
$$\left[\frac{(n_1C_1 + n_2C_2 + n_3C_3 +)^2}{(n_1 + n_2 + n_3 +)}\right]^{1/2}$$

- 12. 50 ml of hydrogen diffuses out through a small hole from a vessel in 20 minutes. The time needed for 40 ml of oxygen to diffuse out is[CBSE PMT 1994]
 - (a) 12 min
- (b) 64 min
- (c) 8 min
- (d) 32 min
- 13. At what temperature will the average speed of CH_4 molecules have the same value as ${\cal O}_2$ has at 300 K

[CBSE PMT 1989]

- (a) 1200 K
- (b) 150 K
- (c) 600 K
- (d) 300 K
- 14. A sample of O_2 gas is collected over water at $23^{\circ}C$ at a barometric pressure of 751 mm Hg (vapour pressure of water at $23^{\circ}C$ is 21 mm Hg). The partial pressure of O_2 gas in the sample collected is [CBSE PMT 1993]
 - (a) 21 mm Hg
- (b) 751 mm Hg
- (c) 0.96 atm
- (d) 1.02 atm
- 15. In an experiment during the analysis of a carbon compound, 145 l of H_2 was collected at 760 mm Hg pressure and $27^{\,o}C$ temperature. The mass of H_2 is nearly

[MNR 1987]

- (a) 10 g
- (b) 12 q
- (c) 24 g
- (d) 6 g

- **16.** The volume of 1 g each of methane (CH_4) , ethane (C_2H_6) , propane (C_3H_8) and butane (C_4H_{10}) was measured at 350 K and 1 atm. What is the volume of butane [NCERT 1981]
 - (a) $495 cm^3$
- (b) $600 cm^3$
- (c) $900 \text{ } cm^3$
- (d) 1700 cm³
- The ratio of the rate of diffusion of helium and methane under identical condition of pressure and temperature will be [IIT 2005]
 - (a) 4

(b) 2

(c) 1

(d) 0.5

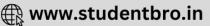
At what temperature in the celsius scale, V (volume) of a certain mass of gas at $27^{\circ}C$ will be doubled keeping the pressure constant[Orissa 1993]

- (a) 54°C
- (b) 327°C
- (c) 427°C
- (d) 527°C
- 19. Pressure of a mixture of 4 g of O_2 and 2 g of H_2 confined in a bulb of 1 litre at $0^{o}C$ is [AIIMS 2000]
 - (a) 25.215 atm
- (b) 31.205 atm
- (c) 45.215 atm
- (d) 15.210 atm
- 20. If pressure becomes double at the same absolute temperature on 2 $L\,CO_2$, then the volume of CO_2 becomes

[AIIMS 1992]

- (a) 2 L
- (b) 4 L
- (c) 25 L
- (d) 1 L
- **21.** Volume of the air that will be expelled from a vessel of 300 cm^3 when it is heated from $27^{\circ}C$ to $37^{\circ}C$ at the same pressure will be
 - (a) 310 cm^3
- (b) 290 cm^3
- (c) 10 cm^3
- (d) $37 cm^3$
- **22.** 300 ml of a gas at $27^{\circ}C$ is cooled to $-3^{\circ}C$ at constant pressure, the final volume is

[NCERT 1981, MP PMT 1992]


- (a) 540 ml
- (b) 135 ml
- (c) 270 ml
- (d) 350 ml

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.

- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- Assertion: Plot of P Vs. 1/V (volume) is a 1.

straight line.

Pressure is directly proportional to Reason

volume.

2. Assertion: Jet aeroplane flying at high altitude

need pressurization of the cabin.

Oxygen is not present at higher Reason

altitude.

3. Assertion: 1 mol of H_2 and O_2 each occupy

22.4 L of volume at $0^{\circ}C$ and 1 bar

pressure.

Molar volume for all gases at the Reason

same temperautre and pressure has

the same volume.

Assertion: Pressure exerted by a mixture of

reacting gases is equal to the sum

of their partial pressures.

Reacting gases react to form a new Reason

gas having pressure equal to the

sum of both.

Greater the value of Vander Waal's 5. Assertion: constant 'a' greater

liquefaction of gas.

Reason indirectly measures the

magnitude of attractive forces

between the molecules.

6. Assertion: Carbondioxide has greater value of

root mean square velocity μ_{rms} than

carbon monoxide.

is directly proportional to Reason μ_{rms}

molar mass.

4.58 mm and 0.0098 ° C is known to 7. Assertion:

be triple point of water.

At this pressure and temperature all Reason

the three states i.e., water, ice and

vapour exist simultaneously.

1/4th of the gas is expelled if air 8. Assertion:

present in an open vessel is heated

from $27^{\circ}C$ to $127^{\circ}C$.

Reason Rate of diffusion of a gas is

inversely proportional to the square

root of its molecular mass.

Assertion: Compressibility factor for hydrogen 9.

varies with pressure with positive

slope at all pressures.

Even at low pressures, repulsive Reason

forces dominate hydrogen gas.[AIIMS 20

Assertion: Waal's 10. equation

applicable only to non-ideal gases. Reason

Ideal gases obey the equation PV = nRT.

Assertion: Pressure exerted by

11.

gas in

container with increasing

temperature of the gas.

With the rise in temperature, the Reason

average speed of gas molecules

increases.

[AIIMS 1995]

Assertion: Gases do not settle to the bottom of

container.

Reason Gases have high kinetic energy.

[AIIMS 1997]

[AIIMS 2001]

A mixture of He and O_2 is used for Assertion: 13.

respiration for deep sea divers.

He is soluble in blood. [AIIMS 1998] Reason

Assertion: Wet air is heavier than dry air. 14.

> Reason The density of dry air is more than

> > density of water. [AIIMS 1999]

15. Assertion: All molecules in a gas have some

speed.

Assertion:

Gas contains molecules of different Reason

size and shape.

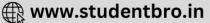
Effusion rate of oxygen is smaller

than nitrogen.

Reason Molecular size of nitrogen is

> smaller than oxygen. [AIIMS 2004]

Characteristics and Measurable properties of gases


1	С	2	С	3	b	4	а	5	С
6	d	7	а	8	b	9	С	10	а
11	а	12	b	13	а	14	d	15	С
16	е								

Ideal gas equation and Related gas laws

	1	С	2	d	3	а	4	а	5	а
	6	bc	7	а	8	а	9	С	10	d
	11	а	12	а	13	а	14	a	15	С
o	16	С	17	b	18	С	19	a	20	b
	21	С	22	С	23	d	24	а	25	С
	26	С	27	b	28	С	29	С	30	С
	31	а	32	а	33	b	34	b	35	b

36	С	37	d	38	С	39	С	40	а
41	b	42	С	43	С	44	d	45	a
46	а	47	b	48	d	49	b	50	С
51	d	52	a	53	а	54	С	55	a
56	a	57	b	58	a	59	b	60	а
61	b	62	d	63	С	64	b	65	d
66	b	67	d	68	а	69	а	70	b
71	С	72	а	73	d	74	С	75	a
76	С	77	d	78	b	79	b	80	b
81	d	82	d	83	С	84	С	85	а
86	d	87	а	88	а	89	С	90	С
91	а	92	С	93	а	94	b	95	а
96	а	97	d	98	b	99	е	100	а
101	С	102	С	103	С	104	С	105	а
106	а								

Kinetic molecular theory of gases and Molecular collisions

1	d	2	С	3	d	4	d	5	b
6	а	7	а	8	С	9	b	10	b
11	а	12	d	13	а	14	а	15	acd
16	а	17	b	18	d	19	b	20	d
21	а	22	d	23	С	24	b	25	b
26	а	27	d	28	а	29	d	30	С
31	С								

Molecular speeds

1	а	2	С	3	d	4	d	5	d
6	С	7	b	8	b	9	d	10	b
11	d	12	С	13	а	14	d	15	d
16	С	17	d	18	d	19	b	20	b
21	С	22	а	23	С	24	b	25	С
26	а	27	d						

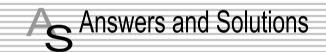
Real gases and Vander waal's equation

1	b	2	b	3	С	4	С	5	d
6	С	7	d	8	b	9	d	10	b
11	С	12	b	13	b	14	d	15	С
16	b	17	а	18	b	19	С	20	а

21

22

Critical state and Liquefaction of gases


1	а	2	b	3	d	4	С	5	d
6	d	7	С	8	С	9	abc	10	С
11	С								

Critical Thinking Questions

1	а	2	С	3	С	4	С	5	а
6	d	7	b	8	b	9	а	10	a
11	а	12	b	13	b	14	С	15	b
16	а	17	b	18	b	19	а	20	d
21	С	22	С						

Assertion & Reason

1	С	2	С	3	а	4	d	5	а
6	d	7	а	8	b	9	а	10	b
11	а	12	а	13	С	14	е	15	d
16	С								

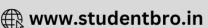
Characteristics and Measurable properties of gases

- (c) Gases do not have definite shape and volume.
 Their volume is equal to the volume of the container.
- 2. (c) All the three phases of water can coexist at $0^{\circ} C \& 4.7 \ mm$ pressure.
- **3.** (b) It is characteristic of gases *i.e.* Thermal energy >> molecular attraction
- **4.** (a) In gases, molecular attraction is very less and intermolecular spaces are large hence kinetic energy of gases is highest.
- 5. (c) Gases and liquids, both can flow and posses viscosity.
- 7. (a) Newton is unit of force.
- **8.** (b) $\frac{C^o}{5} = \frac{F^o 32}{9}$
- 9. (c) $1L = 10^{-3}m^3 = 10^3 cm^3 = 1dm^3 = 10^3 ml$.
- **10.** (a) 1 atm = 10^6 dynes cm⁻²
- 12. (b) Barometer is used to measure atmospheric pressure of mixture of gases. Staglometer is used to measure surface tension. Only manometer is used to measure pressure of pure gas in a vessel.
- **13.** (a) $0^{\circ} C$ is equivalent to $273^{\circ} Ki.e.$ conditions are same so volume will be Vml.

- 14. (d) The mass of gas can be determined by weighing the container, filled with gas and again weighing this container after removing the gas. The difference between the two weights gives the mass of the gas.
- **15.** (c) Nobel gases has no intermolecular forces due to inertness.
- **16.** (e) Total volume of two flasks = 1+ 3 = 4 If P_1 the pressure of gas N_2 in the mixture of N_2 and O_2 then

$$P = \mbox{100} \ kPa$$
 , $P_{\mbox{\scriptsize 1}} = ?$, $V = \mbox{\scriptsize 1}$ litre ,
$$V_{\mbox{\scriptsize 1}} = 4 \mbox{\it litre}$$

applying Boyle's law $PV = P_1V_1$


$$100 \times 1 = P_1 \times 4$$
; $P_1 = 25$

If P_2 is the pressure of O_2 gas in the mixture of O_2 and N_2 then, $320 \times 3 = P_2 \times 4$; $P_2 = 240$ Hence, Total pressure $P = P_1 + P_2 = 25 + 240$ = $265 \ kPa$

Ideal gas equation and Related gas laws

- 1. (c) Boyle's law is $V \propto \frac{1}{P}$ at constant T
- 2. (d) According to Boyle's law $V \propto \frac{1}{P}$ $V = \frac{\text{Constant}}{P}; VP = \text{Constant}.$
- 3. (a) At sea level, because of compression by air above the proximal layer of air, pressure increases hence volume decreases *i.e.* density
- increases. It is Boyle's law. 4. (a) At constant T, $P_1V_1 = P_2V_2$ $1 \times 20 = P_2 \times 50$; $P_2 = \frac{20}{50} \times 1$
- **5.** (a) P.V = constant at constant temperature. As temperature changes, the value of constant also changes.
- **6.** (b,c)According to Boyle's Law *PV* = constant, at constant temperature either *P* increases or *V* increases both (*b*) & (*c*) may be correct.
- 7. (a) $\frac{d_1}{d_2} = \frac{1}{2}$, $\frac{T_1}{T_2} = \frac{2}{1}$ $\therefore \frac{P_1}{P_2} = \frac{V_2}{V_1} \times \frac{T_1}{T_2} = \frac{T_1 \cdot d_1}{T_2 \cdot d_2}$ $\frac{P_1}{P_2} = \frac{2}{1} \cdot \frac{1}{2} = \frac{1}{1}$
- **8.** (a) Absolute temperature is temperature measured in o Kelvin , expressed by T
- 11. (a) $T_1 = 273^{\circ} C = 273 + 273^{\circ} K = 546^{\circ} K$ $T_2 = 0^{\circ} C = 273 + 0^{\circ} C = 273^{\circ} K$ $P_1 = 1 \; ; \; P_2 = ?$ According to Gay-Lussac's law $\frac{P_1}{T_1} = \frac{P_2}{T_2} \; \therefore \; P_2 = \frac{P_1 T_2}{T_1} = \frac{1 \times 273^{\circ} K}{546^{\circ} K} \; \text{atm;} \; \frac{1}{2} \; \text{atm.}$
- **12.** (a) $V_t = V_o(1 + \alpha_v t)$ $\because (V_2 - V_1) = \Delta V = V_o \alpha (t_2 - t_1)$

if $t_2 - t_1 = 1^o$ then $\Delta V = \alpha V_o$

For every 1^oC increase in temperature, the volume of a given mass of an ideal gas increases by a definite fraction $\frac{1}{273.15}$ of V_o .

Here V_o is volume at $0^o C$ temperature.

13. (a)
$$\frac{V_1}{V_2} = \frac{T_1}{T_2} :: V_2 = \frac{T_2}{T_1} V_1 = \frac{546° K}{273° K} \times 0.2L = 0.4L.$$

14. (a)
$$V_2 = \frac{T_2}{T_1} . V_1 = \frac{270^{\circ} K}{300^{\circ} K} .400 \, cm^3 = 360 \, cm^3$$

contraction = $V_1 - V_2 = 400 - 360 = 40 \, cm^3$

15. (c) At constant volumes
$$P \propto T$$

$$P = \text{constant } T; \quad PV = nRT : P = \frac{nR}{V}T$$

slope =
$$m = \frac{nR}{V}$$
 : $V_2 < V_1$

 $\frac{m_1}{m_2} = \frac{V_2}{V_1} \therefore m_1 < m_2$ is curve for V_2 has a greater

slope than for V₁

16. (c)
$$\frac{P_1}{T_1} + \frac{P_1}{T_1} = \frac{P}{T_1} + \frac{P}{T_2}$$

$$\frac{2P_1}{T_1} = P\left(\frac{T_1 + T_2}{T_1 T_2}\right); \quad \therefore P = \frac{2P_1(T_1 T_2)}{T_1(T_1 + T_2)} = \frac{2P_1 T_2}{T_1 + T_2}$$

At constant V of a definite mass
$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \therefore \frac{P_1}{P_2} = \frac{300}{600} = \frac{1}{2} \text{ i.e. pressure increases}$$

and on increasing temperature energy of molecules increases so the rate of collisions also increases and number of moles remains constant because there is neither addition nor removal of gas in the occurring.

19. (a) Avogadro number =
$$6.0224 \times 10^{23}$$

20. (b) Compressibility =
$$\frac{PV}{nRT}$$
 < 1 at STP (as given)

$$\begin{array}{c} nRT > PV \\ N \times 0.0821 \times 273 > 1V_m \\ 22.41 \ litres > V_m \end{array} \right\} \quad \begin{array}{c} R = \text{ 0.821} \\ T = 273^{\circ}K \\ P = 1 \\ n = 1 \end{array}$$

21. (c) The value of universal gas constant can be expressed in different units and its value would depend only on the units of the measurement.

22. (c)
$$PV = nRT$$

$$R = \frac{PV}{nT} = \text{litre.atm.} K^{-1} \text{ mole}^{-1}$$

23. (d)
$$(atm. K^{-1} mol^{-1})$$
 is not a unit of R

$$1 \ cal = 4.2 \ J.$$

$$\therefore \frac{8.31}{4.2} cal. K^{-1} mol^{-1} = 1.987 cal K^{-1} mol^{-1}$$

30. (c)
$$PV = nRT : \frac{n}{V} = \frac{P}{RT}$$

31. (a)
$$P = \frac{nRT}{V} = \frac{2 \times 0.0821 \times 546}{44.81} = 2 \text{ atm.}$$

32. (a)
$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2} \therefore n_2 = \frac{P_2V_2T_1}{P_1V_1T_2} n_1$$

at STP
$$n_1$$
 = one mole,
 P_1 = 1 atm.
 V_1 = 22.4 lt
 T_1 = 273° K
 T_2 = $\frac{1}{1} \times \frac{22.4}{22.4} \times \frac{273}{303} \times 1 = 0.9$ moles

33. (b)
$$V = \frac{nRT}{P} = \frac{0.5 \times 0.082 \times 273^{\circ} K}{1} = 11.2 lit$$

34. (b)
$$V_2 = \frac{P_1 V_1 T_2}{P_2 T_1} \Rightarrow P_1 = P$$
 ; $T_1 = 273^{\circ} K$

$$P_2 = \frac{3}{2} P \text{ ; } T_2 = T_1 + \frac{T_1}{3} = \frac{4}{3} \times 273^{\circ} K$$

$$V_2 = \frac{2P}{3P} \times \frac{4}{3} \times \frac{273}{273} \times 100 \text{ } cc = \frac{800}{9} \text{ } cc = 88.888 \text{ } cc$$

$$= 88.9 \text{ } cc$$

35. (b)
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T} \therefore \frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$$

36. (c)
$$d_a = 2d_b$$
; $2M_a = M_b$
$$PV = nRT = \frac{m}{M}RT$$
; $P = \frac{m}{V} \cdot \frac{RT}{M} = \frac{dRT}{M}$
$$P_a \quad d_a M_b \quad 2d_b \quad 2M_a \quad A$$

$$\frac{P_a}{P_b} = \frac{d_a}{d_b} \frac{M_b}{M_a} = \frac{2d_b}{d_b} \times \frac{2M_a}{M_a} = 4$$

37. (d)
$$n \text{ of } O_2 = \frac{16}{32} = \frac{1}{2}$$

n of
$$H_2 = \frac{3}{2}$$

Total no. of moles = $\frac{3}{2} + \frac{1}{2} = 2$

$$V = \frac{nRT}{P} = \frac{2 \times .082 \times 273}{1} = 44.8 lit = 44800 \ ml$$

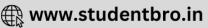
38. (c)
$$n = \frac{PV}{RT} = \frac{m}{M}$$

 $m = \frac{MPV}{RT} = \frac{34 \times 2 \times 100}{0.082 \times 293} = 282.4 \text{ gm}$

39. (c)
$$V_2 = \frac{P_1 V_1}{T_1} \frac{T_1}{P_2} = \frac{760}{600} \times \frac{546}{273} \times 273 = 691.6 ml.$$

40. (a)
$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2} \therefore T_2 = \frac{P_2}{P_1} \frac{V_2}{V_1} T_1 \frac{m_1}{m_2}$$

= $\frac{0.75}{1} \times \frac{1}{1} \times \frac{2}{1} \times 300^{\circ} K = 450^{\circ} K$


41. (b)
$$V_2 = \frac{P_1}{P_2} \frac{T_2}{T_1} . V_1 = \frac{1}{0.5} \times \frac{250}{300} \times 12000 \ lit. = 20000 \ lit.$$

42. (c) At constant pressure

$$V \propto nT \propto \frac{m}{M} T$$

$$\frac{V_1}{V_2} = \frac{m_1 T_1}{m_2 T_2} \therefore \frac{T_1}{T_2} = \frac{V_1}{m_1} \times \frac{m_2}{V_2} = \frac{d_2}{d_1} \Rightarrow \frac{300^{\circ} K}{T_2} = \frac{0.75 d}{d}$$

$$T_2 = \frac{300}{0.75} = 400^{\circ} K$$

- **43.** (c) $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$ $\therefore T_2 = \frac{P_2 V_2}{P_1 V_1} \times T_1 = \frac{740}{740} \times \frac{80}{100} \times 300$ = $240^{\circ} K = -33^{\circ} C$
- **47.** (b) Because H_2 & Cl_2 gases may react with each other to produce HCl gas hence Dalton's law is not applicable.
- **48.** (d) Because $HCl \& NH_3$ gases may react to produce NH_4Cl gas. Dalton's Law is applicable for non reacting gas mixtures.
- **49.** (b) NH_3 and HCl & HBr is a reacting gas mixture to produce $NH_4Cl \& NH_4Br$ so Dalton's law is not applicable.
- **50.** (c) No. of moles of lighter gas $=\frac{m}{4}$ No. of moles of heavier gas $=\frac{m}{40}$

Total no. of moles
$$=\frac{m}{4} + \frac{m}{40} = \frac{11m}{40}$$

Mole fraction of lighter gas
$$=$$
 $\frac{\frac{m}{4}}{\frac{11m}{40}} = \frac{10}{11}$

Partial pressure due to lighter gas = $P_o \times \frac{10}{11}$ = $1.1 \times \frac{10}{11} = 1$ atm.

52. (a) m. wt. of $NH_3 = 17$; m. wt. of $N_2 = 28$ m. wt. of $CO_2 = 44$; m. wt. of $O_2 = 32$ beacuse NH_3 is lightest gas out of these gases

$$\left[r \propto \frac{1}{\sqrt{\text{Molecular Weight}}}\right]$$

- **55.** (a) $\frac{r_g}{r_{He}} = \sqrt{\frac{M_{He}}{M_g}} : M_g = M_{He} \cdot \frac{r^2_{He}}{r_g^2} = \frac{4}{(1.4)^2} = \frac{4}{1.96} = 2$ $\left[Note : 1.4 = \sqrt{2} \right]$
- **56.** (a) $r_g = \frac{1}{5} . r_{H_2}$ $\frac{M_g}{M_{H_2}} = \left[\frac{r_{H_2}}{r_g} \right]^2 = (5)^2 = 25 ; M_g = 2 \times 25 = 50$
- **57.** (b) $r_g = \frac{1}{6} r_{H_2}$; $M_g = M_{H_2} \cdot \left[\frac{r_{H_2}}{r_g} \right]^2 = 2 \times 6^2 = 2 \times 36 = 72$
- **58.** (a) $M_1 = 64$; $r_2 = 2r_1$ $M_2 = M_1 \left[\frac{r_1}{r_2} \right]^2 = 64 \times \frac{1}{4} = 16$
- **59.** (b) $r_O = r_H \sqrt{\frac{d_H}{d_O}} = 1\sqrt{\frac{0.09}{1.44}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$

- **60.** (a) $r_a = 5r_b$; $\frac{d_a}{d_b} = \left[\frac{r_b}{r_a}\right]^2 = \left(\frac{1}{5}\right)^2 = \frac{1}{25}$
- **61.** (b) $\frac{d_1}{d_2} = \frac{1}{16}$; $\frac{r_1}{r_2} = \sqrt{\frac{d_2}{d_1}} = \sqrt{16} = \frac{4}{1}$
- **62.** (d) $\frac{D_A}{D_B} = \sqrt{\frac{\rho_B}{\rho_A}} = \left[\frac{\rho_B}{\rho_A}\right]^{\frac{1}{2}}$; $\therefore D_A = D_B \left(\frac{\rho_B}{\rho_A}\right)^{\frac{1}{2}}$
- 63. (c) Gases may be separated by this process because of different rates of diffusion due to difference in their densities.
- **64.** (b) NH_4Cl ring will first formed near the HCl bottle because rate of diffusion of NH_3 is more than that of HCl because $M_{NH_3}: M_{HCl} = 17:36.5)$. SO NH_3 will reach first to the HCl bottle & will react there with HCl to form NH_4Cl ring
- **65.** (d) Because both *NO* and C_2H_6 have same molecular weights $\left[M_{NO}=M_{C_2H_6}=30\right]$ and rate of diffusion ∞ molecular weight.
- **67.** (d) $\frac{M_A}{M_B} = \left(\frac{r_B}{r_A}\right)^2 :: r_A = 2r_B :: \frac{r_B}{r_A} = \frac{1}{2} = \frac{1}{(2)^2} = \frac{1}{4} = .25$
- **68.** (a) $r_H = \frac{2gm}{10 \text{ min}}$ if $r_O = \frac{xgm}{10 \text{ min}}$ $r_O = r_H \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \frac{2}{10} \sqrt{\frac{2}{32}}$ $\frac{x}{10} = \frac{2}{10 \times 4} = \frac{1}{2} gm. = .5 gm$
- **69.** (a) $r_{CH_4} = 2r_g$

$$M_g = M_{CH_4} \left(\frac{r_{CH_4}}{r_g}\right)^2 = 16 \times 2^2 = 64$$

70. (b) $r \propto \frac{1}{\sqrt{M}}$ $\because r = \frac{Volume \ effused}{time \ taken} = \frac{V}{t}$ $\frac{V}{t} \propto \frac{1}{\sqrt{M}} \therefore \text{ for same volumes } (V \text{ constant})$

$$\begin{split} t & \propto \sqrt{M} : \frac{t_1}{t_2} = \sqrt{\frac{M_1}{M_2}} \\ t_{He} & = t_{H_2} \sqrt{\frac{M_{He}}{M_{H_2}}} = 5\sqrt{\frac{4}{2}} = 5\sqrt{2}s. \end{split}$$

$$t_{O_2} = t = 5\sqrt{\frac{32}{2}} = 20\,s$$

$$t_{CO} = 5\sqrt{\frac{28}{2}} = 5\sqrt{14}s$$
; $t_{CO_2} = 5\sqrt{\frac{44}{2}} = 5\sqrt{22}s$

71. (c) $\frac{r_{N_2}}{r_{SO_2}} = \frac{V_{rms}N_2}{V_{rms}SO_2} = \sqrt{\frac{T_{N_2}}{T_{SO_2}} \cdot \frac{M_{SO_2}}{M_{N_2}}} = \sqrt{\frac{T_{N_2}}{323} \times \frac{64}{28}}$ $1.625 = \sqrt{\frac{T_{N_2}}{323} \cdot \frac{16}{7}}$

$$T_{N_2} = \frac{(1.625)^2 \times 323 \times 7}{16} = 373^{\circ} K$$

72. (a) $C + H_2O \rightarrow CO_{(g)} + H_{2(g)}$

 $12\,gm \rightarrow 1mol + 1mol$

12 gm C produces 2mole of gases (1mole CO & 1 mole of H_2)

∴48 gm C may produce $\frac{48}{12} \times 2 = 4 \times 2 = 8$ mole

 $=22.4\times8~L~gases~=179.2~L~gas.$

- 73. (d) Molecular weight = $\frac{mRT}{PV} = \frac{4.4 \times .082 \times 273}{1 \times 2.24}$ = 44 So the gas should be CO_2
- 74. (c) PV = nRT $P = \frac{n}{V}RT \quad \because \frac{n}{V} = C \implies P = CRT$ $T = \frac{P}{CR} = \frac{1}{1 \times 821} = 12^{\circ} K$
- **75.** (a) 6.02×10^{22} molecules of each N_2 , O_2 and H_2 $= \frac{6.02 \times 10^{22}}{6.02 \times 10^{23}}$ moles of each
 Weight of mixture = weight of 0.1 mole N_2 + weight of 0.1 mole H_2 + weight of 0.1 mole of O_2 $= (28 \times 0.1) + (2 \times 0.1) + (32 \times 0.1) = 6.2 \, gm$
- 76. (c) *M.wt* of $CO_2 = 12+16+16 = 44$ Volume of 44 gm of CO_2 at NTP = 22.4 litre

 1 gm of CO_2 at NTP = $\frac{22.4}{44}$ 4.4 gm of CO_2 at N.T.P $\Rightarrow \frac{22.4}{44} \times 4.4 \text{ litre} = 2.24 \text{ litre}$
- **78.** (b) No. of moles of CO_2 present in 200 ml solution = molarity × Volume (in lt.) = $0.1 \times \frac{200}{1000} = .02$ Volume of 0.02 mole of $CO_2 = 22.4 \times .02lt. = 0.448 \, lit.$
- 79. (b) Molecular weight = $V.d. \times 2 = 11.2 \times 2 = 22.4$ Volume of 22.4 gm Substance of NTP = 22.4 litre

 1 gm substance at NTP = $\frac{22.4}{22.4}$ litre

11.2 gm substance of NTP = 11.2 litre

80. (b) $\frac{M.wt. of O_2}{M.wt. of SO_2} \Rightarrow \frac{M_1}{M_2} \Rightarrow \frac{32}{64} = \frac{1}{2}$

The weight of oxygen will be $\frac{1}{2}$ that of SO_2

- **81.** (b) For HI has the least volume because of greater molecular weight $V \propto \frac{1}{M}$
- **83.** (c) Since no. of molecules is halved so pressure should also be halved.

- **84.** (c) H_2 will be filled first because of lower molecular weight
- **85.** (a) Mixture of SO_2 and Cl_2 are reacted chemically and forms SO_2Cl_2 . That is why mixture of these gases is not applicable for Dalton's law.
- **86.** (d) According to Boyle's law $P_1V_1 = P_2V_2 \Rightarrow P_1 \times 60 = 720 \times 100$ $P_1 = \frac{720 \times 100}{60} = 1200 \, mm$
- **87.** (a) Rate of diffusion $\propto \frac{1}{\sqrt{\text{Molecular Mass}}}$ that is why H_2 gas diffuse first
- **88.** (a) Solution level will rise, due to absorption of CO_2 by sodium hydroxide.

 $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$

 $\therefore \text{ At S.T.P. } 1g \quad CaCO_3 \quad \text{produce} = \frac{22.4}{100} = .224 \, litre \text{ of } CO_2$

- **90.** (c) The density of gas $=\frac{Molecular\ wt.\ Of\ Metal}{Volume}$ $=\frac{45}{22.4}$ $=2\ gmlitre^{-1}$
- **91.** (a) $M_1 = 32g$ for O_2 , $M_2 = 2g$ for H_2 $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}; \qquad \frac{r_1}{r_2} = \sqrt{\frac{2}{32}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$
- 92. (c) In 22.4l of H_2 maximum number of molecules $= 6.023 \times 10^{23}$ In 1l of H_2 maximum number of molecules $= \frac{6.023 \times 10^{23}}{22.4}$

In 15l of H_2 maximum number of molecules $=\frac{6.023\times10^{23}}{22.4}\times15=4.03\times10^{23} \text{ molecules.}$

- **93.** (a) 22.4l O_2 at S.T.P. = 32 gm of O_2 1l O_2 at S.T.P. = $\frac{32}{22.4} = 1.43 gm$ of O_2
- 95 (a) We know that molecular mass of hydrogen $M_1=2$ and that of helium $M_2=4$, we also know that Graham's law of diffusion

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{4}{2}} = \sqrt{2} = 1.4$$
; $r_1 = 1.4m$

96. (a) $\frac{r_A}{r_H} = \sqrt{\frac{M_H}{M_A}} = \frac{r}{6r} = \sqrt{\frac{2}{M_A}}$

$$M_A = 6 \times 6 \times 2 = 72g$$

97. (d) Given that:

 $V_1 = 100 \, ml, P_1 = 720 \, mm, V_2 = 84 \, ml, P_2 = ?$

By using $P_1V_1 = P_2V_2$ [According to the Boyle's law]

$$P_2 = \frac{P_1 V_1}{V_2} = \frac{720 \times 100}{84} = 857.142$$

Hence, $P_2 = 857.14 mm$

98. (b) According to gas law

$$PV = nRT$$
, $n = \frac{PV}{RT}$

$$\frac{n_A}{n_B} = \frac{\frac{P_1 V_1}{R T_1}}{\frac{P_2 V_2}{R T_2}}; \frac{n_A}{n_B} = \frac{P_1 V_1}{T_1} \times \frac{T_2}{P_2 V_2}$$

$$\frac{n_A}{n_B} = \frac{2P \times 2V}{2T} \times \frac{T}{PV} \; ; \quad \frac{n_A}{n_B} = \frac{2}{1}$$

99. (e) No. of molecules $= 2 \times V.d$

$$2 \times 38.3 = 76.3$$

wt. of $NO_2 = x$

So that *wt*. of $N_2O_4 = 100 - x$

Hence,
$$\frac{x}{46} + \frac{100 - x}{92} = \frac{100}{76.6} = \frac{2x + 100 - x}{92} = \frac{100}{76.6}$$

x = 20.10, no. of mole. of $NO_2 = \frac{20.10}{46} = 0.437$

100. (a) Given that

 $P_1 = 76cm$ of Hg (Initial pressure at N.T.P.)

$$P_2 = ?$$
, $V_1 = 5 litre$, $V_2 = 30 + 5 = 35 litres$

According to Boyle's law

$$P_1V_1 = P_2V_2$$
; $76 \times 5 = P_2 \times 35$

$$P_2 = \frac{76 \times 5}{35} \Rightarrow P_2 = 10.8cm \text{ of } Hg$$

101. (c) Given initial volume $(V_1) = 300 \, cc$, initial temperature $(T_1) = 27^{\circ} \, C = 300 \, K$, initial pressure $(P_1) = 620 \, mm$, final temperature $T_2 = 47^{\circ} \, C = 320 \, K$ and final pressure $(P_2) = 640 \, mm$. We know from the general gas equation

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \frac{620 \times 300}{300} = \frac{640 \times V_2}{320} \implies V_2 = 310 cc$$

102. (c) $NH_3 + HCl \rightarrow NH_4Cl$

4litre 1.5litre

HCl is a limiting compound. That's why 1.5litre of HCl reacts with 1.5litre of NH_3 and forms NH_4Cl . Thus (4 - 1.5) 2.5litre NH_3 remains after the reaction.

103. (c) $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$; $\frac{P_1 \times 4}{T_1} = \frac{2P_1 \times V_2}{2T_1}$

$$8 = 2 \times V_2$$
 so $V_2 = 4 dm^3$

104. (c)
$$P_1 = P, V_1 = V, T_1 = T$$

$$P_2 \frac{P}{2}, V_2 = ?, T_2 = T$$

According to gas equation

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
 or $\frac{PV}{T} = \frac{PV_2}{2T}$

$$V_2 = 4V$$

105. (a) $P_1 = P, V_1 = V, T_1 = 273 + 75 = 348 K$

$$P_2 = 2P, V_2 = \frac{85}{100}, T_2 = ?$$

$$\frac{P \times V}{398} = \frac{2P \times 85 \, V}{T_2 \times 100} \Rightarrow T_2 = \frac{348 \times 2 \times 85}{100}$$

$$T_2 = 591.6K = 318.6^{\circ} C$$

106. (a) Boyle's law -PV = constant On differentiating the equation,

$$d(PV) = d(C) \implies PdV + VdP = 0$$

$$\Rightarrow VdP = -PdV \Rightarrow \frac{dP}{P} = -\frac{dV}{V} \ .$$

Kinetic molecular theory of gases and Molecular collisions

- **4.** (d) Kinetic energy = $\frac{3}{2}RT$
- 5. (b) $K.E = \frac{3}{2}RT$ it means that K.E depends upon T (absolute temperature) only.
- 7. (a) $KE = \frac{3}{2}RT = \frac{3}{2}PV$

$$\therefore P = \frac{2}{3} \frac{E}{V} \text{ for unit volume (} V = 1) \Rightarrow P = \frac{2}{3} E$$

- **8.** (c) Tr. $K.E. = \frac{3RT}{2}$ it means that the Translational Kinetic energy of Ideal gas depends upon temperature only.
- 9. (b) $\frac{E_{He}}{E_{H_2}} = \sqrt{\frac{T_{He}}{T_{H_2}}}$ so energies will be same for

 $He \& H_2$ at same temperature.

- **11.** (a) $K.E. = \frac{3}{2}.RT = \frac{3}{2}.2.T$ $\therefore R \approx 2calK^{-1}mol^{-1}$
- 12. (d) All molecules of an ideal gas show random motion. They collide with each other and walls of container during which they lose or gain energy so they may not have same kinetic energy always.
- 13. (a) For same temperature kinetic energies of $H_2 \& He$ molecules will be same because kinetic energy depends only on temperature.
- **14.** (a) For same temp. kinetic energies would be equal for all molecules, what ever their molecular weights will be, it doesn't matter.

15. (a,c,d)Kinetic energies per molecule will be same because it is proportional to absolute temperature only.

$$\frac{d_{N_2}}{d_{CO_2}} = \frac{M_{N_2}}{M_{CO_2}} = \frac{28}{44} \text{ i.e. } dN_2 < dCO_2$$

Total translational kinetic energy will also be same because at same temperature & pressure number of molecules present in same volume would be same (according to Avogadro's Law)

- **16.** (a) On increasing pressure, the volume decreases and density increases. So molecules get closer to each other hence mean free path also decreases.
- 17. (b) Most probable velocity increase and fraction of molecule possessing most probable velocity decrease.
- **18.** (d) $PV = nRT = \frac{m}{M}RT$ $\therefore \frac{m}{V} = \frac{PM}{RT} = \text{density}$
- **19.** (b) $d \propto \frac{P}{T}$ the value of $\frac{P}{T}$ is maximum for (b)
- **20.** (d) If inversion temperature is $80^{\circ}C = 193^{\circ}K$ then the temperature, at which it will produce cooling under Joule Thomson's effect, would be below inversion temperature except $173^{\circ}K$ all other values given as
- 21. (a) Since $\frac{C_P}{C_V} = 1.4$, the gas should be diatomic.

If volume is 11.2 *lt* then, no. of moles = $\frac{1}{2}$

 \therefore no. of molecules = $\frac{1}{2} \times$ Avagadro's No.

no. of atoms = $2 \times no$. of molecules

$$2 \times \frac{1}{2} \times$$
 Avagadro's No.

$$=6.0223 \times 10^{23}$$

22. (d) Density = $\frac{M}{V}$ $d = \frac{v.d \times 2}{V} \qquad (M = V.d \times 2)$ $V.d = \frac{d \times V}{2}$

$$V.d = \frac{0.00130 \times 22400}{2} = 14.56 \, \text{gm}^{-1}$$

23. (c) Volume of steam = $1lt = 10^3 cm^3$ $\therefore m = d.V$ \therefore mass of $10^3 cm^3$ steam = density × Volume = $\frac{0.0006 gm}{cm^3} \times 10^3 cm^3 = 0.6 gm$

Actual volume occupied by H_2O molecules is equal to volume of water of same mass

- \therefore Actual volume of H_2O molecules in 6gm steam
- = mass of steam/density of water
- $= 0.6 gm / 1 gm/cm^3 \Rightarrow 0.6 cm^3$
- **24.** (b) $r = \frac{C_P}{C_V} = \frac{5}{3} = 1.66$ (For Monoatomic as He, Ne, Ar)
- **25.** (b) The density of neon will be highest at $0^{\circ}C$ 2 atm according to $d \propto \frac{P}{T}$
- **29.** (d) *K.E.* per mole = $\frac{3}{2}RT$ so all will have same *K.E.* at same temperature.
- **30.** (c) $\because W = P.dV = E$ \therefore Energy per unit volume = P
- **31.** (c) $d \propto M \Rightarrow \frac{d_1}{d_2} = \frac{M_1}{M_2}; \frac{3d}{d} = \frac{M}{M_2}; M_2 = \frac{M}{3}.$

Molecular speeds

- 1. (a) $V_{ms} = \sqrt{\frac{3RT}{M}}, V_{av} = \sqrt{\frac{8RT}{\pi M}}; \frac{V_{ms}}{V_{av}} = \sqrt{\frac{3\pi}{8}}$ $= \sqrt{\frac{66}{56}} \Rightarrow \frac{1.086}{1}$
- 3. (d) most probable velocity: mean velocity: $V_{rms} = \sqrt{\frac{2RT}{M}} : \sqrt{\frac{8RT}{\pi M}} : \sqrt{\frac{3RT}{M}} = \sqrt{2} : \sqrt{\frac{8}{\pi}} : \sqrt{3}$
- 4. (d) $V_{rms} = \sqrt{\frac{3RT}{M}} : V_{rms} \propto \frac{1}{\sqrt{M}}$ at same T

because H_2 has least molecular weight so its r.m.s. velocity should be maximum.

- 5. (d) $\frac{U_{SO_2}}{U_{He}} = \frac{1}{2} = \sqrt{\frac{M_{He}}{M_{SO_2}} \frac{T_{SO_2}}{T_{He}}} = \sqrt{\frac{4}{64} \cdot \frac{T_{SO_2}}{300}}$ = $\frac{4}{64} \cdot \frac{T_{SO_2}}{300} = \frac{1}{4}$; $T_{SO_2} = 1200^{\circ} K$
- **6.** (c) $\frac{U_{O_3}}{U_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{O_3}}} = \sqrt{\frac{32}{48}} = \sqrt{\frac{2}{3}}$
- 7. (b) Average kinetic energy per molecule $= \frac{3}{2} KT = \frac{3}{2} \times 1.38 \times 10^{-23} \times 300 J = 6.17 \times 10^{-21} J$
- 8. (b) $\frac{U_{SO_2}}{U_{O_2}} = \sqrt{\frac{M_{O_2} T_{SO_2}}{M_{SO_2} T_{O_2}}} = \sqrt{\frac{32 \times T_{SO_2}}{64 \times 303}} = 1$ $1 = \frac{32 \times T_{SO_2}}{64 \times 303} \Rightarrow T_{SO_2} = 606$
- **9.** (d) Among these Cl_2 has the highest molecular weight so it will posses lowest root mean square velocity.

10. (b)
$$\frac{U_1}{U_2} = \sqrt{\frac{T_1}{T_2}}$$
 $\therefore \frac{T_1}{T_2} = \left(\frac{5 \times 10^4}{10 \times 10^4}\right)^2 = \frac{1}{4}$

12. (c)
$$V_{rms} = \sqrt{\frac{3KT}{Molecular weight}}$$
 i.e. $V_{rms} \propto \frac{1}{\sqrt{m}} \propto (m)^{-\frac{1}{2}}$

13. (a) When average speed of molecule is increased due to increase in temperature then the change in momentum during collision between wall of container and molecules of gas also increases.

14. (d)
$$\frac{U_1}{U_2} = \sqrt{\frac{m_2}{m_1} \cdot \frac{T_1}{T_2}} \quad \because T_1 = T_2$$

$$\frac{U_1^2}{U_2^2} = \frac{m_2}{m_1} \qquad \therefore m_1 U_1^2 = m_2 U_2^2$$

15. (d)
$$U_2 = U_1 \sqrt{\frac{T_2}{T_1}} = U_1 \sqrt{\frac{1200}{300}} = U_1 \times 2$$

r.m.s. velocity will be doubled.

16. (c)
$$\frac{U_{H_2}}{U_{O_2}} = \sqrt{\frac{T_{H_2}}{M_{H_2}}} \cdot \frac{M_{O_2}}{T_{H_2}} = \sqrt{\frac{50}{2} \cdot \frac{32}{800}} = 1$$

17. (d)
$$U = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3PV}{M}} = \sqrt{\frac{3P}{d}} : U \propto \frac{1}{\sqrt{d}}$$

19. (b)
$$\frac{U_1}{U_2} = \sqrt{\frac{n_1 T_1}{n_2 T_2}} = \sqrt{\frac{n \times T}{2n \times 2T}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

$$U_2 = 2U_1 = 2U$$

21. (c)
$$\frac{V_{mp}}{V_{av}} = \frac{\sqrt{\frac{2RT}{M}}}{\sqrt{\frac{8RT}{\pi M}}} = \frac{\sqrt{\pi}}{2}$$

22. (a)
$$V_{ms} = \sqrt{\frac{3RT}{M}} \Rightarrow V_{ms} = \sqrt{T}$$

Given $V_1 = V$, $T_1 = 300 \, K$, $V_2 = 2V$, $T_2 = ?$
 $\frac{V_1}{V_2} = \sqrt{\frac{T_1}{T_2}}$; $\left(\frac{V}{2V}\right)^2 = \frac{300}{T_2} \Rightarrow T_2 = 300 \times 4 = 1200 \, K$

24. (b)
$$\left(P - \frac{n^2 a}{V^2}\right) (V - nb) = nRT$$

 $\left(P - \frac{(2)^2 \times 4.17}{(5)^2}\right) (5 - 2 \times .03711) = 2 \times .0821 \times 300$
 $P = \frac{2 \times .0821 \times 300}{5 - 2 \times .03711} - \frac{4.7 \times 2^2}{5^2} \Rightarrow 10 - 0.66 = 9.33 atm$

26. (a) Average speed : most probable speed
$$\sqrt{\frac{8RT}{\pi M}}: \sqrt{\frac{2RT}{M}} \implies \sqrt{\frac{8}{\pi}}: \sqrt{2} \implies 1.128: 1.$$

27. (d)
$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

$$\sqrt{30^2 R} = \sqrt{\frac{3RT}{M}} \implies 30 \times 30 R = \frac{3R \times 300}{M}$$

$$\Rightarrow M = \frac{3 \times 300}{30 \times 30} 1 \text{ gm} = 0.001 \text{ kg}.$$

Real gases and Vander waal's equation

2. (b) Because molecules of real gases have intermolecular forces of attraction so the effective impact on the wall of container is diminished. Pressure of real gas is reduced by $\frac{a}{v^2}$ factor hence behaviour of real gas deviate from ideal behaviour.

3. (c)
$$Z = \frac{PV}{RT}$$
 : for ideal gas $PV = RT$ so $Z = 1$

12. (b)
$$Z = \frac{PV}{RT}$$
; for ideal gas $PV = RT$; so $Z = 1$

- **13.** (b) Ideal gas has no attractive force between the particles
- 14. (d) PV = nRT is a ideal gas equation it is allowed when the temperature is high and pressure is low.
- **16.** (b) At Boyle temperature real gas is changed into ideal gas
- 17. (a) When pressure is low $\left[P + \frac{a}{V^2}\right](V b) = RT$ or $PV = RT + Pb \frac{a}{V} + \frac{ab}{V^2}$ or $\frac{PV}{RT} = 1 \frac{a}{VRT}$ $Z = -\frac{a}{VRT} \left(\because \frac{PV}{RT} = Z\right)$
- 18. (b) At high temperature and low pressure, Vander Waal's equation is reduced to ideal gas equation. PV = nRT
- PV = RT (For 1 mole of gas)20. (a) Vander waal's constant for volume correction b is the measure of the effective volume occupied by the gas molecule.

22. (a)
$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

 $\left(P + \frac{2.253}{0.25 \times 0.25}\right)(0.25 - 0.0428) = 0.0821 \times 300$
or $(P + 36.048)(0.2072) = 24.63$
 $\Rightarrow P + 36.048 = 118.87 \Rightarrow P = 82.82 \text{ atm.}$

Critical state and Liquefaction of gases

- (b) A diabatic demagnetisation is a technique of liquefaction of gases in which temperature is reduced.
- 3. (d) An ideal gas can't be liquefied because molecules of ideal gas have not force of attraction between them.
- **4.** (c) At above critical temperature, substances are existing in gaseous state, since gas cannot be liquefied above it.

- (d) Absence of inter molecular attraction ideal gas 5. cannot be liquefied at any volume of P and T.
- 6. (d) For Z gas of given gases, critical temperature is highest

$$T_c = \frac{8a}{27Rb} \implies T_c = \frac{8 \times 12}{27 \times .0821 \times .027} = 1603.98 K$$

- (c) Value of constant a is greater than other for 7. NH_3 that's why NH_3 can be most easily liquefied.
- (c) The temperature below which the gas can be 8. liquefied by the application of pressure alone is called critical temperature.
- (c) $d = \frac{M}{V} \implies M = d \times V$ 10. $M = 2.68 \times 22.4$ at N.T.P. (: V = 22.41) $M = 60.03 \ gm$
 - m. wt of COS = 12 + 16 + 32 = 60
- (c) 22400 ml is the volume of O_2 at N.T.P =32gm 11.

1*ml* is the volume of
$$O_2$$
 at NTP = $\frac{32}{22400}$

112 ml is the volume of O_2 at NTP =

$$\frac{32}{22400} \times 112$$
= 0.16 gm of O_2

Critical Thinking Questions

(a) Average kinetic energy ∞ (T Kelvin) 1.

(Factor)
$$\frac{K.E_2}{K.E_1} = \frac{T_2}{T_1} = \frac{40 + 273}{20 + 273} = \frac{313}{293}$$

2.

(c) M. wt. = V.d. × 2
=
$$70 \times 2 = 140 \Rightarrow x = \frac{m.wt.}{wt.of[CO]} = \frac{140}{[12+16]} = 5$$

- (c) Gas deviate from ideal gas behaviour to real 3. gas (according to Vander Waal's at low temperature and high pressure)
- (c) At same temperature and pressure, equal 4. volumes have equal number of molecules. If 1lit. of oxygen consists N molecules then at same temperature and pressure 1 lit of SO2 will consists N molecules. So 2 lit. of SO_2 will contain 2N molecules.
- $V_{av}:V_{rms}:V_{most\ probable}=$ (a) 5. $\sqrt{\frac{8RT}{\pi M}}:\sqrt{\frac{3RT}{M}}:\sqrt{\frac{2RT}{M}}$

$$\sqrt{\pi M} : \sqrt{M} : \sqrt{M}$$

$$\alpha : V : U = \sqrt{2} : \sqrt{\frac{8}{\pi}} : \sqrt{3} = 1 : 1.128 : 1.224$$

(d) $\frac{C_p}{C}$ ratio for diatomic gases is 1.40 at lower 6.

temperature & 1.29 at higher temperature so the answer is 'd'.

(b) PV = nRT (For ideal gas) 7.

$$Z = \frac{PV}{nRT} = 1$$
 (For ideal gas)

- (b) If Z < 1 then molar volume is less than 22.4 L
- (a) $r_{O_2} = \frac{x}{18} mole / sec \implies r_g = \frac{x}{45} mol / sec$

$$M_g = M_{O2} \left(\frac{r_{O_2}}{r_g}\right)^2 = 32 \left(\frac{x}{18} \times \frac{45}{x}\right)^2 = 32 \times \frac{45^2}{18^2}$$

10. (a) $r_{SO_2}: r_{O_2}: r_{CH_4} = \frac{1}{\sqrt{M_{SO_2}}}: \frac{1}{\sqrt{O_2}}: \frac{1}{\sqrt{CH_4}}$

$$= \frac{1}{\sqrt{64:32:16}} = \frac{1}{\sqrt{4:2:1}}$$

$$\frac{1}{2} : \frac{1}{\sqrt{2}} : \frac{1}{1}; \frac{2}{2} : \frac{2}{\sqrt{2}} : \frac{2}{1}; 1 : \sqrt{2} : 2$$

- square speed = $\left[\frac{n_1c_1^2 + n_2c_2^2 + n_3c_3^2 + ...}{n_1 + n_2 + n_3 + ...}\right]^{1/2}$.
- (b) If 40 ml O_2 will diffuse in t min. then.

$$r_{O_2} = \frac{40}{t}$$

$$r_H = \frac{50}{20} \implies r_O = r_H 2 \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \frac{50}{20} \sqrt{\frac{2}{32}} = \frac{50}{20} \cdot \frac{1}{4}$$

$$\frac{40}{t} = \frac{50}{80} \therefore t = \frac{40 \times 80}{50} = 60 \quad \text{min.}$$

- **13.** (b) $\frac{V_{av}CH_4}{V_{ab}O_2} = \sqrt{\frac{T_{CH_4}}{T_{O_2}} \cdot \frac{M_{O_2}}{M_{CH_4}}} = 1$ $\frac{T_{CH_4}}{300} \cdot \frac{32}{16} = 1$; $T_{CH_4} = 150^{\circ} K$
- **14.** (c) Pressure of O_2 (dry) = 751-21 = 730 mm Hg $=\frac{730}{760}=0.96$ atm
- **15.** (b) PV = nRT, $n = \frac{PV}{RT} = \frac{1 \times 145}{0.082 \times 3} = 5.8 \approx 6 \, mole$.
- **16.** (a) $V = \frac{nRT}{P} = \frac{m}{M} \cdot \frac{RT}{P} = \frac{1}{58} \times \frac{0.82 \times 350}{1} = 0.495 \, lit.$
- 17. (b) $\frac{r_{He}}{r_{CH.}} = \sqrt{\frac{M_{CH.4}}{M_{Ho}}} = \sqrt{\frac{16}{4}} = 2$
- **18.** (b) $\frac{V_1}{V_2} = \frac{T_1}{T_2} :: T_2 = \frac{T_1 V_2}{V_1} = 300^{\circ} K, \frac{2V}{V} = 600^{\circ} K$ $T_2 = 600^{\circ} K = (600 - 273)^{\circ} C = 327^{\circ} C$
- **19.** (a) no. of moles of $O_2 = \frac{4}{32} = 0.125$ no. of moles of $H_2 = \frac{2}{3} = 1$ total no. of moles = 1+0.125 = 1.125 $P = \frac{nRT}{V} = \frac{1.125 \times 0.082 \times 273}{1} = 25.184 \text{ atm.}$

20. (d)
$$\frac{P_1}{P_2} = \frac{1}{2}, \because \frac{V_1}{V_2} = \frac{P_2}{P_2} = \frac{2}{1}$$

$$\frac{2L}{V_2} = \frac{2}{1}$$
; $V_2 = 1L$

21. (c) $\frac{V_2}{V_1} = \frac{T_2}{T_1}$

$$V_2 = \frac{T_2}{T_1} V_1 = \frac{310^{\circ} K}{300^{\circ} K} \times 300 cm^3 = 310 cm^3$$

22. (c) $V_2 = \frac{T_2}{T_1} \cdot V_1 = \frac{270^{\circ} K}{300^{\circ} K} \times 300 ml = 270 ml$

Assertion & Reason

- 1. (c) Pressure is inversly proportional to volume (Boyle's law). $p\alpha \frac{1}{V}$ (n, T constant).
- 2. (c) The air pressure decreases with increase in altitude. So the partial pressure of Oxygen is not sufficient for breathing at higher altitude and thus pressurization is needed.
- 3. (a) At a given temperature and pressure the volume of a gas is directly proportional to the amount of gas Van (P and T constant).
- 4. (d) According to Dalton's law of partial pressure, the pressure exerted by a mixture of non interacting gases is equal to the sum of their partial pressures (pressure exerted by individual gases in mixture) $P_{Total} = P_1 + P_2 + P_3 \dots$ (T and V constant). Both the gases if non-interacting would spread uniformly to occupy the whole volume of the vessel.
- **5.** (a) Considering the attractive force pressure in ideal gas equation (PV = nRT) is correct by introducing a factor of $\frac{an^2}{V^2}$ where a is a vander waal's constant.
- **6.** (d) $\mu_{rms} = \sqrt{\frac{3RT}{M}}$ is inversly related to molecular mass. Therefore, $\mu_{rms}(CO) > \mu_{rms}(CO_2)$.
- **8.** (b) $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (Initial fraction $\frac{V_1}{V_2} = 1$ when temperature is $27^{\circ}C$. At $127^{\circ}C$ the new fraction is $\frac{V_1}{V_2} = \frac{300}{400} = \frac{3}{4}$ \therefore air expelled $\Rightarrow 1 \frac{3}{4} = \frac{1}{4}$
- **9.** (a) In case of H_2 , compressibility factor increases with the pressure. At 273 K, Z > 1 which shows that it is difficult to compress the gas as compared to ideal gas. In this case repulsive forces dominate.
- **10.** (b)In real gases, the intermolecular forces of attraction and the volume occupied by the gas molecules cannot be neglected.

- 11. (a) When the temperature increase, the average speed of gas molecules increases and by this increase the pressure of gas is also increases.
- 12. (a) It is correct that gases do not settle to the bottom of container and the reason for this is that due to higher kinetic energy of gaseous molecules they diffuse.
- 13. (c) The assertion, that a mixture of helium and oxygen is used for deep sea divers, is correct. The He is not soluble in blood. Therefore, this mixture is used.
- **14.** (e) Dry air is heavier than wet air because the density of dry air is more than water.
- **15.** (d) All molecule of a gas have different speed. Therefore, they move by its own speed.
- 16. (c) Assertion is true but reason is false because of effusion rate $\propto \frac{1}{\sqrt{M}}$ (Molecular weight) but it does not depend on molecular size.

